Tragverhalten von Stahlfaserbeton

Steel fibre reinforced concrete has been the subject of considerable research since the early 1960's. However, the use of steel fibre reinforced concrete in civil engineering has in general been limited to non-structural applications. This is due to the inherent softening behaviour of steel fibre reinforced concrete after cracking. To alleviate the problem steel fibre reinforced concrete can be used in combination with conventional reinforcement. This study aims at a better understanding of the load carrying behaviour of steel fibre reinforced concrete and reinforced steel fibre concrete. Accordingly, the study is organized in two main parts. The first part deals with (i) the pull-out behaviour of thin, flexible fibres from a cementitious matrix and (ii) the influence of steel fibres on the behaviour of concrete subjected to tension, compression and bending. In order to assess the fibre effectiveness analytical stress-crack width relationships are derived. These distinguish between an initial strain hardening behaviour (fibre activation) and a subsequent softening behaviour (fibre pullout). Provided that the fibres are pulled out without fracturing this model and its extension to bending allow to describe the fibre effectiveness with only two parameters which can be determined from simple tests. It is shown that the addition of steel fibres may result in an increase of the tensile strength of up to 25 %. However, due to the reduced workability of fresh concrete with high fibre contents such a strength increase is hardly achievable in practice. The second part presents a theoretical model capable of predicting the load-deformation response of reinforced steel fibre concrete. The model combines the tension chord model with the fibre effectiveness model developed in this study. It allows crack spacings and crack widths to be predicted with good approximation. It is verified by comparisons with results from tension and bending tests and a parameter study is performed to discuss the most important influences. The study shows that the addition of fibres has a favourable effect on crack spacings, crack widths and deformations provided that the conventional reinforcement remains elastic. However, the hardening response of ordinary reinforced concrete is changed to a softening response – even with low fibre contents – after onset of yielding of the conventional reinforcement. The softening response is associated with a localization of deformations that may reduce the deformation capacity of a structural member. Hence, in order to achieve a satisfactory behaviour of a structural member the contents and properties of steel fibres and conventional reinforcement have to be carefully selected based on a thorough investigation of the load-deformation behaviour. In order to facilitate this task approximate procedures for the design of structural members subjected to tension and bending are developed and complemented with simple relationships to account for the fibre effectiveness.

[1]  H. L. Cox The elasticity and strength of paper and other fibrous materials , 1952 .

[2]  Nemkumar Banthia,et al.  Predicting the Flexural Postcracking Performance of Steel Fiber Reinforced Concrete from the Pullout of Single Fibers , 1997 .

[3]  V. Li,et al.  TENSILE STRAIN-HARDENING BEHAVIOR OF POLYVINYL ALCOHOL ENGINEERED CEMENTITIOUS COMPOSITE (PVA-ECC) , 2001 .

[4]  V. S. Gopalaratnam,et al.  Tensile Failure of Steel Fiber‐Reinforced Mortar , 1987 .

[5]  Albin Kenel Biegetragverhalten und Mindestbewehrung von Stahlbetonbauteilen , 2002 .

[6]  Peter Marti,et al.  Tragverhalten von Stahlbeton , 1999 .

[7]  Antoine E. Naaman,et al.  Tensile stress-strain Properties of SIFCON, , 1989 .

[8]  Aurelio Muttoni,et al.  Die Anwendbarkeit der Plastizitätstheorie in der Bemessung von Stahlbeton , 1990 .

[9]  Hugo Bachmann Zur plastizitätstheoretischen Berechnung statisch unbestimmter Stahlbetonbalken , 1967 .

[10]  P. Soroushian,et al.  Bond of Confined Steel Fiber Reinforced Concrete to Deformed Bars , 1994 .

[11]  Sidney Mindess,et al.  Bond of deformed bars in plain and fibre reinforced concrete under reversed cyclic loading , 1982 .

[12]  Antoine E. Naaman,et al.  Fiber Pullout and Bond Slip. II: Experimental Validation , 1991 .

[13]  Arne Hillerborg,et al.  Analysis of one single crack , 1983 .

[14]  Mohamed H. Harajli,et al.  Local Bond Stress-Slip Behavior of Reinforcing Bars Embedded in Plain and Fiber Concrete , 1995 .

[15]  P. Mangat,et al.  Shrinkage of steel fibre reinforced cement composites , 1988 .

[16]  P. Noakowski DIE BEWEHRUNG VON STAHLBETONTEILEN BEI ZWANGSBEANSPRUCHUNG INFOLGE TEMPERATUR , 1978 .

[17]  G. Brux Stahlfaserspritzbeton für den Tunnelbau ‐ Verhalten bei Brand , 1999 .

[18]  R P Pama,et al.  ULTIMATE FLEXURAL STRENGTH OF REINFORCED CONCRETE BEAMS WITH LARGE VOLUMES OF SHORT RANDOMLY ORIENTED STEEL FIBRES , 1992 .

[19]  Viktor Sigrist,et al.  Zum Verformungsvermögen von Stahlbetonträgern , 1995 .

[20]  R. J. Craig Flexural Behavior and Design of Reinforced Fiber Concrete Members , 1987 .

[21]  D. Tabor,et al.  Interfacial phenomena in steel fibre reinforced cement II: Pull-out behaviour of steel wires☆ , 1978 .

[22]  R. Swamy,et al.  DEFORMATION AND ULTIMATE STRENGTH IN FLEXURE OF REINFORCED CONCRETE BEAMS MADE WITH STEEL FIBER CONCRETE , 1981 .

[23]  M. Teutsch,et al.  Betonbauwerke aus Stahlfaserbeton beim Umgang mit umweltgefährdenden Stoffen , 2001 .

[24]  Ferdinand S. Rostásy,et al.  BOND OF DEFORMED REINFORCING BAR EMBEDDED IN STEEL FIBRE REINFORCED CONCRETE , 1988 .

[25]  S. Diamond,et al.  The contact zone between portland cement paste and glass “aggregate” surfaces , 1978 .

[26]  Peter Marti,et al.  Versuche an stahlfaserverstärkten Stahlbetonelementen , 2001 .

[27]  Martin Franz Bäuml,et al.  Steigerung der Dauerhaftigkeit selbstverdichtender Betone durch den Einsatz von Polymerfaserkurzschnitt , 2002 .

[28]  Luc Taerwe,et al.  Quantification of variations in the steel fibre content of fresh and hardened concrete , 1999 .

[29]  D. Hordijk TENSILE AND TENSILE FATIGUE BEHAVIOUR OF CONCRETE; EXPERIMENTS, MODELLING AND ANALYSES , 1992 .

[30]  B. Espion,et al.  De l'utilisation de fibres métalliques comme armature complémentaire de poutres en béton armé soumises à flexion , 1993 .

[31]  Bernard Espion Discussion on "Flexural analysis of reinforced concrete beams containing steel fibers" , 1994 .

[32]  John Forbes Olesen,et al.  Fictitious Crack Propagation in Fiber-Reinforced Concrete Beams , 2001 .

[33]  A. Samer Ezeldin,et al.  Normal‐ and High‐Strength Fiber‐Reinforced Concrete under Compression , 1992 .

[34]  Victor C. Li,et al.  Effect of inclining angle, bundling and surface treatment on synthetic fibre pull-out from a cement matrix , 1990 .

[35]  R. Gray Experimental techniques for measuring fibre/matrix interfacial bond shear strength , 1983 .

[36]  B. Vijaya Rangan,et al.  Fiber Reinforced Concrete Properties , 1971 .

[37]  P. Bartos,et al.  Review paper: Bond in fibre reinforced cements and concretes , 1981 .

[38]  Daniele Ferretti,et al.  Flexural Deformability of Reinforced Concrete Beams , 1998 .

[39]  R. Swamy,et al.  INFLUENCE OF FIBER REINFORCEMENT ON RESTRAINED SHRINKAGE AND CRACKING , 1979 .

[40]  M. Maage,et al.  Interaction between steel fibers and cement based matrixes , 1977 .

[41]  Antoine E. Naaman,et al.  Stress-Strain Properties of Fiber Reinforced Mortar in Compression , 1985 .

[42]  Victor C. Li From Micromechanics to Structural Engineering - The Design of Cementitious Composites for Civil Engi , 1993 .

[43]  D. Tabor,et al.  Interfacial phenomena in steel fibre reinforced cement I: Structure and strength of interfacial region☆ , 1978 .

[44]  Antoine E. Naaman,et al.  Fiber Pullout and Bond Slip. I: Analytical Study , 1991 .

[45]  A. Evans,et al.  Matrix fracture in fiber-reinforced ceramics , 1986 .

[46]  Albin Kenel,et al.  Faseroptische Dehnungsmessungen an einbetonierten Bewehrungsstäben , 2002 .

[47]  P. Lawrence,et al.  Some theoretical considerations of fibre pull-out from an elastic matrix , 1972 .

[48]  Antoine E. Naaman,et al.  Fracture Model for Fiber Reinforced Concrete , 1983 .

[49]  Hugo Bachmann,et al.  Ungenügende Duktilität beim Bewehrungsstahl , 1998 .

[50]  Antoine E. Naaman,et al.  Bond-Slip Mechanisms of Steel Fibers in Concrete , 1991 .

[51]  Sidney Mindess,et al.  The microstructure of the steel fibre-cement interface , 1985 .

[52]  Charles H. Henager,et al.  Analysis of Reinforced Fibrous Concrete Beams , 1976 .

[53]  Keivan Noghabai,et al.  BEHAVIOR OF TIE ELEMENTS OF PLAIN AND FIBROUS CONCRETE AND VARYING CROSS SECTIONS , 2000 .

[54]  A. Hillerborg,et al.  Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements , 1976 .

[55]  Antoine E. Naaman,et al.  Bond Stress Model for Fiber Reinforced Concrete Based on Bond Stress-Slip Relationship , 1989 .

[56]  Byung Hwan Oh,et al.  FLEXURAL ANALYSIS OF REINFORCED CONCRETE BEAMS CONTAINING STEEL FIBERS. DISCUSSION AND CLOSURE , 1992 .

[57]  Gallus Rehm,et al.  Über die Grundlagen des Verbundes zwischen Stahl und Beton , 1961 .

[58]  Antoine E. Naaman,et al.  Probabilistic Analysis of Fiber-Reinforced Concrete , 1974 .

[59]  P. Rossi,et al.  Analysis of metallic fibre-reinforced concrete beams submitted to bending , 1996 .

[60]  P. Marti,et al.  Rotation Capacity of Reinforced Concrete Slabs , 2000 .

[61]  C. Page Microstructural features of interfaces in fibre cement composites , 1982 .

[62]  Antoine E. Naaman,et al.  EFFECT OF MORTAR FINENESS AND ADHESIVE AGENTS ON PULLOUT RESPONSE OF STEEL FIBERS , 2000 .

[63]  Philipp Stoffel,et al.  Zur Beurteilung der Tragsicherheit bestehender Stahlbetonbauten , 2000 .

[64]  Antoine E. Naaman,et al.  Pull-Out Mechanism in Steel Fiber-Reinforced Concrete , 1976 .

[65]  Lars Kützing Tragfähigkeitsermittlung stahlfaserverstärkter Betone , 2000 .

[66]  Y. N. Ziraba,et al.  Fracture characteristics of sisal fibre reinforced concrete , 1987 .

[67]  V. Li,et al.  Determination of interfacial debond mode for fiber-reinforced cementitious composites , 1994 .

[68]  S. Igarashi,et al.  Fracture Toughness for Steel Fiber‐Cement Paste Interfacial Zone , 1992 .

[69]  Antoine E. Naaman,et al.  Bond Stress-Slip Response of Reinforcing Bars Embedded in FRC Matrices under Monotonic and Cyclic Loading , 1997 .

[70]  Colin D. Johnston,et al.  Steel Fiber Reinforced Mortar and Concrete: A Review of Mechanical Properties , 1974 .

[71]  J. Morton,et al.  The cracking of composites consisting of discontinuous ductile fibres in a brittle matrix — effect of fibre orientation , 1974 .

[72]  Ahmed Ezeldin,et al.  Bond behavior of normal and high-strength fiber reinforced concrete , 1989 .

[73]  Peter Marti,et al.  Harmonized Test Procedures for Steel Fiber-Reinforced Concrete , 1999 .

[74]  B. P. Hughes,et al.  Paper 16. Fibre reinforced concrete in direct tension , 1977 .

[75]  A. J. Bigaj-van Vliet Bond of deformed reinforcing steel bars embedded in steel fiber reinforced concrete: State-of-the-art report , 2001 .

[76]  A. Kelly,et al.  Theory of multiple fracture of fibrous composites , 1973 .

[77]  Antoine E. Naaman Fasern mit verbesserter Haftung , 2000 .

[78]  Walter Kaufmann,et al.  Tension Chord Model for Structural Concrete , 1998 .

[79]  Manuel Alvarez Blanco Einfluss des Verbundverhaltens auf das Verformungsvermögen von Stahlbeton , 1998 .

[80]  Christopher K.Y. Leung,et al.  Effect of fiber inclination on crack bridging stress in brittle fiber reinforced brittle matrix composites , 1992 .

[81]  Ghaida’ K. Jumaa,et al.  Effect of Fiber Reinforcement on Bond Strength of Tension Lap Splices in High-Strength Concrete , 2001 .

[82]  Yukimasa Goto,et al.  CRACKS FORMED IN CONCRETE AROUND DEFORMED TENSION BARS , 1971 .

[83]  Surendra P. Shah,et al.  A model for predicting fracture resistance of fiber reinforced concrete , 1983 .

[84]  A. M. Brandt On the optimal direction of short metal fibres in brittle matrix composites , 1985 .

[85]  Peter Marti,et al.  Versuche zum Verformungsvermögen von Stahlbetonträgern , 1993 .

[86]  E. Mörsch,et al.  Der Eisenbetonbau seine Theorie und Anwendung , 1908 .

[87]  H. Martin ZUSAMMENHANG ZWISCHEN OBERFLAECHENBESCHAFFENHEIT, VERBUND UND SPRENGWIRKUNG VON BEWEHRUNGSSTAEHLEN UNTER KURZZEITBELASTUNG , 1973 .