Optimal Design of Magnetorheological Damper Based on Tuning Bouc-Wen Model Parameters Using Hybrid Algorithms

This paper presents a useful approach to optimally design magnetorheological (MR) dampers used in structural buildings. To fulfill this aim, damper parameters are regarded as the design variables whose values can be obtained through an optimization process. To improve the quality of searching for the optimum parameters of MR dampers, charged system search (CSS) and grey wolf (GW) algorithms, two of the most widely utilized meta-heuristic algorithms, are used together, and hybrid CSS-GW is presented. To show the authenticity and robustness of the new algorithm in solving optimization problems, some benchmark test functions are tested, at first. Then, an eleven-story benchmark building equipped with 3 MR dampers is considered to get the optimum design of the MR damper using the hybrid CSS-GW. Results show that the developed hybrid algorithm can successfully figure out the optimum parameters of the MR dampers.

[1]  M. Askari,et al.  Experimental forward and inverse modelling of magnetorheological dampers using an optimal Takagi–Sugeno–Kang fuzzy scheme , 2016 .

[2]  Tudor Sireteanu,et al.  Model parameter identification for vehicle vibration control with magnetorheological dampers using computational intelligence methods , 2004 .

[3]  Meiying Ye,et al.  Parameter estimation of the Bouc–Wen hysteresis model using particle swarm optimization , 2007 .

[4]  Xudong Zhu,et al.  Parametric Identification of Bouc-Wen Model and Its Application in Mild Steel Damper Modeling , 2011 .

[5]  B. F. Spencer,et al.  STATE OF THE ART OF STRUCTURAL CONTROL , 2003 .

[6]  Hyung-Jo Jung,et al.  Semi‐active fuzzy control for seismic response reduction using magnetorheological dampers , 2004 .

[7]  N. Mohajer Rahbari,et al.  A new hybrid optimization algorithm for recognition of hysteretic non-linear systems , 2013 .

[8]  B. Farahmand Azar,et al.  Semi‐active direct control method for seismic alleviation of structures using MR dampers , 2013 .

[9]  A. Kaveh,et al.  A novel heuristic optimization method: charged system search , 2010 .

[10]  Hosein Ghaffarzadeh,et al.  Semi-active control of seismically excited structures with variable orifice damper using block pulse functions , 2016 .

[11]  Andrew Lewis,et al.  Grey Wolf Optimizer , 2014, Adv. Eng. Softw..

[12]  T. T. Soong,et al.  State-of-the-art review: Active structural control in civil engineering , 1988 .

[13]  S. M. Dumne,et al.  Seismic response analysis of adjacent buildings connected with MR dampers , 2010 .

[14]  Billie F. Spencer,et al.  Modeling and Control of Magnetorheological Dampers for Seismic Response Reduction , 1996 .

[15]  Siamak Talatahari,et al.  Enriched Imperialist Competitive Algorithm for system identification of magneto-rheological dampers , 2015 .

[16]  Jie Li,et al.  Parameter identification of modified Bouc–Wen model and analysis of size effect of magnetorheological dampers , 2017 .

[17]  Hyung-Jo Jung,et al.  CONTROL OF SEISMICALLY EXCITED CABLE-STAYED BRIDGE EMPLOYING MAGNETORHEOLOGICAL FLUID DAMPERS , 2003 .

[18]  C. K. Dimou,et al.  Identification of Bouc-Wen hysteretic systems using particle swarm optimization , 2010 .

[19]  Shirley J. Dyke,et al.  PHENOMENOLOGICAL MODEL FOR MAGNETORHEOLOGICAL DAMPERS , 1997 .

[20]  Siamak Talatahari,et al.  Optimum design of gravity and reinforced retaining walls using enhanced charged system search algorithm , 2014 .

[21]  T. T. Soong,et al.  Supplemental energy dissipation: state-of-the-art and state-of-the- practice , 2002 .

[22]  S. Hurlebaus,et al.  Smart structure dynamics , 2006 .

[23]  Bijan Samali,et al.  A novel hysteretic model for magnetorheological fluid dampers and parameter identification using particle swarm optimization , 2006 .

[24]  V. K. Koumousis,et al.  Identification of Bouc-Wen hysteretic systems by a hybrid evolutionary algorithm , 2008 .

[25]  Seyed Mohammad Mirjalili,et al.  Evolutionary population dynamics and grey wolf optimizer , 2015, Neural Computing and Applications.

[26]  A. Kaveh,et al.  Parameter identification of Bouc-Wen model for MR fluid dampers using adaptive charged system search optimization , 2012 .

[27]  B Samali,et al.  Bouc-Wen model parameter identification for a MR fluid damper using computationally efficient GA. , 2007, ISA transactions.