An Artificial Primosome: Design, Function, and Applications

Double‐stranded (ds) DNA is capable of the sequence‐specific accommodation of an additional oligodeoxyribonucleotide strand by the peptide nucleic acid(PNA)‐assisted formation of a so‐called PD‐loop. We demonstrate here that the PD‐loop may function as an artificial primosome within linear, nonsupercoiled DNA duplexes. DNA polymerase with its strand displacement activity uses this construct to initiate the primer extension reaction at a designated dsDNA site. The primer is extended by several hundred nucleotides. The efficiency of dsDNA priming by the artificial primosome assembly is comparable to the single‐stranded DNA priming used in various assays. The ability of the PD‐loop structure to perform like an artificial primosome on linear dsDNA may find applications in biochemistry, molecular biology, and molecular biotechnology, as well as for DNA diagnostics. In particular, multiple labels can be incorporated into a chosen dsDNA site resulting in ultrasensitive direct quantification of specific sequences. Furthermore, nondenaturing dsDNA sequencing proceeds from the PD‐loop. This approach opens the way to direct isothermal reading of the DNA sequence against a background of unrelated DNA, thereby eliminating the need for purification of the target DNA.

[1]  P. Nielsen,et al.  Double duplex invasion by peptide nucleic acid: a general principle for sequence-specific targeting of double-stranded DNA. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[2]  David R. Corey,et al.  Enhancement of strand invasion by oligonucleotides through manipulation of backbone charge , 1996, Nature Biotechnology.

[3]  R. Gross,et al.  [17] Direct sequencing of λgt11 clones , 1993 .

[4]  L. Linton,et al.  Toward real-world sequencing by microdevice electrophoresis. , 1999, Genome research.

[5]  Terence A. Brown DNA Sequencing: The Basics , 1994 .

[6]  Gerhard Breipohl,et al.  Recognition of Uncharged Polyamide-Linked Nucleic Acid Analogs by DNA Polymerases and Reverse Transcriptases , 1997 .

[7]  B. Nordén,et al.  Extended DNA-recognition repertoire of peptide nucleic acid (PNA): PNA-dsDNA triplex formed with cytosine-rich homopyrimidine PNA. , 1997, Biochemistry.

[8]  M. Egholm,et al.  Peptide nucleic acid.DNA strand displacement loops as artificial transcription promoters. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[9]  M. Egholm,et al.  Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. , 1991, Science.

[10]  P. Nielsen,et al.  Applications of peptide nucleic acids. , 1999, Current opinion in biotechnology.

[11]  V V Demidov,et al.  PNA openers as a tool for direct quantification of specific targets in duplex DNA. , 1999, Journal of biomolecular structure & dynamics.

[12]  M. Frank-Kamenetskii,et al.  Topological Links between Duplex DNA and a Circular DNA Single Strand. , 1999, Angewandte Chemie.

[13]  W. Ansorge,et al.  DNA sequencing strategies: automated and advanced approaches , 1997 .

[14]  F. Sanger,et al.  DNA sequencing with chain-terminating inhibitors. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[15]  H. Erfle,et al.  Automated fluorescent sequencing of lambda DNA. , 1990, Nucleic acids research.

[16]  V. Potaman,et al.  Overcoming a barrier for DNA polymerization in triplex-forming sequences. , 1999, Nucleic acids research.

[17]  H. Kuhn,et al.  Topologische Verbindung zwischen einer Doppelstrang‐DNA und einer ringförmigen Einzelstrang‐DNA , 1999 .

[18]  C. Richardson,et al.  DNA sequence analysis with a modified bacteriophage T7 DNA polymerase. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[19]  S. Mirkin,et al.  Intramolecular DNA triplexes: unusual sequence requirements and influence on DNA polymerization. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[20]  B. Johnston,et al.  Mapping adducts of DNA structural probes using transcription and primer extension approaches. , 1992, Methods in enzymology.

[21]  V. Demidov,et al.  Duplex DNA capture. , 2000, Current issues in molecular biology.

[22]  C. Schneider,et al.  A new and fast method for preparing high quality lambda DNA suitable for sequencing. , 1988, Nucleic acids research.

[23]  Mary E. S. Loomis,et al.  The Basics: , 1990, Is That True?.

[24]  A. Malik Direct sequencing of inserts cloned into lambda vectors. , 1993, Methods in molecular biology.

[25]  R. Vinayak,et al.  Polyamide nucleic acid-DNA chimera lacking the phosphate backbone are novel primers for polymerase reaction catalyzed by DNA polymerases. , 1998, Biochemistry.

[26]  V V Demidov,et al.  Kinetics and mechanism of polyamide ("peptide") nucleic acid binding to duplex DNA. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[27]  M. Frank-Kamenetskii,et al.  An Earring for the Double Helix: Assembly of Topological Links Comprising Duplex DNA and a Circular Oligodeoxynucleotide , 2000, Journal of biomolecular structure & dynamics.

[28]  P. Nielsen,et al.  Increased DNA binding and sequence discrimination of PNA oligomers containing 2,6-diaminopurine. , 1997, Nucleic acids research.

[29]  V V Demidov,et al.  Sequence-specific protection of duplex DNA against restriction and methylation enzymes by pseudocomplementary PNAs. , 2000, Biochemistry.

[30]  D. Corey,et al.  Peptide nucleic acids: expanding the scope of nucleic acid recognition. , 1997, Trends in biotechnology.

[31]  M. Ronaghi,et al.  A Sequencing Method Based on Real-Time Pyrophosphate , 1998, Science.

[32]  J. Glass,et al.  Sequencing multimegabase-template DNA with BigDye terminator chemistry. , 1998, Genome research.

[33]  Gan Wang,et al.  Peptide nucleic acid (PNA) binding-mediated induction of human gamma- globin gene expression , 1999, Nucleic Acids Res..

[34]  M. Egholm,et al.  DNA unwinding upon strand-displacement binding of a thymine-substituted polyamide to double-stranded DNA. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[35]  R. Wu Development of the primer-extension approach: a key role in DNA sequencing. , 1994, Trends in biochemical sciences.

[36]  Peter E. Nielsen,et al.  STRAND DISPLACEMENT BINDING OF A DUPLEX-FORMING HOMOPURINE PNA TO A HOMOPYRIMIDINE DUPLEX DNA TARGET , 1996 .

[37]  V. Allfrey,et al.  Isolation of active genes containing CAG repeats by DNA strand invasion by a peptide nucleic acid. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[38]  E. Uhlmann,et al.  PNAs: synthetische Polyamidnucleinsäuren mit außergewöhnlichen Bindungseigenschaften , 1998 .

[39]  Gerhard Breipohl,et al.  PNA: Synthetic Polyamide Nucleic Acids with Unusual Binding Properties. , 1998, Angewandte Chemie.

[40]  M. Frank-Kamenetskii Triplexes and Biotechnology , 1999 .

[41]  Brian N. Johnson,et al.  An integrated nanoliter DNA analysis device. , 1998, Science.

[42]  S. Gal,et al.  Sequencing of double-stranded PCR products. , 1993, Methods in molecular biology.

[43]  H. Erfle,et al.  Automated fluorescent sequencing of cosmid DNA. , 1990, Nucleic acids research.

[44]  A. S. Krasilnikov,et al.  Mechanisms of triplex-caused polymerization arrest. , 1997, Nucleic acids research.

[45]  V V Demidov,et al.  PD-loop: a complex of duplex DNA with an oligonucleotide. , 1998, Proceedings of the National Academy of Sciences of the United States of America.