Transition from Dyakonov and Dyakonov-Tamm surface waves to surface-plasmon-polariton waves induced by temperature

Temperature-induced changes in the propagation of electromagnetic surface waves guided by the planar interface of a temperature-sensitive isotropic material (namely, InSb) and a temperature-insensitive anisotropic material were investigated theoretically in the terahertz frequency regime. Two types of anisotropic partnering material were considered: (i) a homogeneous material and (ii) a periodically nonhomogeneous material. As the temperature increases, the isotropic partnering material is transformed from a weakly dissipative dielectric material to a plasmonic material. As a consequence, the surface waves change from Dyakonov surface waves to surface-plasmon-polariton waves for case (i), and change from Dyakonov–Tamm surface waves to surfaceplasmon-polariton waves for case (ii). Numerical investigations demonstrated that dramatic changes in the numbers of propagating Dyakonov or Dyakonov–Tamm surface waves, their angular existence domains, their propagation constants, and their decay constants, could arise from modest changes in temperature.

[1]  W. Robertson,et al.  Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material , 2005 .

[2]  B. Schmitt Differential equations with periodic coefficients , 1971 .

[3]  F. N. Marchevskii,et al.  The theory of singular electromagnetic waves in bounded anisotropic media , 1984 .

[4]  Ibrahim Abdulhalim,et al.  Surface Plasmon Resonance for Biosensing: A Mini-Review , 2008 .

[5]  E. V. Chulkov,et al.  Theory of surface plasmons and surface-plasmon polaritons , 2007 .

[6]  Towards metamaterials with giant dielectric anisotropy via homogenization: An analytical study , 2015 .

[7]  A. Lakhtakia,et al.  Dyakonov--Tamm wave at the planar interface of a chiral sculptured thin film and an isotropic dielectric material , 2007, 0706.4287.

[8]  J. B. Gruber,et al.  Intrinsic Concentration and Heavy‐Hole Mass in InSb , 1970 .

[9]  V. A. I︠A︡kubovich,et al.  Linear differential equations with periodic coefficients , 1975 .

[10]  T. Gaylord,et al.  Surface mode at isotropic–uniaxial and isotropic–biaxial interfaces , 1998 .

[11]  L. Schlie,et al.  Transient terahertz reflection spectroscopy of undoped InSb from 0.1 to 1.1 THz , 1996 .

[12]  V. Konopsky,et al.  Photonic crystal surface waves for optical biosensing , 2007, 2011 International Workshop on Biophotonics.

[13]  T. Mayer,et al.  Planar Light Concentration in Micro-Si Solar Cells Enabled by a Metallic Grating–Photonic Crystal Architecture , 2016 .

[14]  F. Ramos-Mendieta,et al.  Tunable photonic crystals with semiconducting constituents , 2000, Conference Digest. 2000 Conference on Lasers and Electro-Optics Europe (Cat. No.00TH8505).

[15]  F. Chiadini,et al.  Temperature–Mediated Transition From Dyakonov Surface Waves to Surface–Plasmon–Polariton Waves , 2016, IEEE Photonics Journal.

[16]  Tom G. Mackay,et al.  Modern Analytical Electromagnetic Homogenization , 2015 .

[17]  A. Lakhtakia,et al.  Observation of the Dyakonov-Tamm wave. , 2013, Physical review letters.

[18]  Akhlesh Lakhtakia,et al.  Semiconductor split-ring resonators for thermally tunable terahertz metamaterials , 2008 .

[19]  F. Chiadini,et al.  Temperature-mediated transition from Dyakonov–Tamm surface waves to surface-plasmon-polariton waves , 2017, 1707.08993.

[20]  L. Rubin,et al.  Instrumentation and methods for low temperature measurements in high magnetic fields , 1977 .

[21]  Tadao Nagatsuma,et al.  Handbook of Terahertz Technologies : Devices and Applications , 2015 .

[22]  A. Lakhtakia,et al.  Electromagnetic Surface Waves: A Modern Perspective , 2013 .

[23]  Domenico Pacifici,et al.  Plasmonic nanostructure design for efficient light coupling into solar cells. , 2008, Nano letters.

[24]  D. Pozar,et al.  Theory of electromagnetic waves , 1984, IEEE Antennas and Propagation Society Newsletter.

[25]  L. Torner,et al.  Dyakonov Surface Waves: A Review , 2008 .

[26]  Observation of Dyakonov Surface Waves , 2009 .

[27]  Giant dielectric anisotropy via homogenization , 2014, 1405.1198.

[28]  M. Oszwałldowski,et al.  Temperature dependence of intrinsic carrier concentration and density of states effective mass of heavy holes in InSb , 1988 .

[29]  Experimental excitation of the Dyakonov-Tamm wave in the grating-coupled configuration. , 2014, Optics letters.

[30]  J. Ekin Experimental Techniques for Low-Temperature Measurements: Cryostat Design, Material Properties, and Superconductor Critical-Current Testing , 2007 .

[31]  L. Torner,et al.  Practical dyakonons. , 2012, Optics letters.

[32]  Dilip K. Paul,et al.  Sculptured Thin Films: Nanoengineered Morphology and Optics , 2005 .

[33]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[34]  J. S. Sekhon,et al.  Plasmonics: the future wave of communication , 2011 .