A Dynamic Spatio-temporal Precipitation Model

A spatio-temporal model for precipitation is presented. Modeling the continuous and the discrete part of rainfall together, it is assumed that precipitation has a censored and powertransformed normal distribution. The mean of this distribution is linked to covariates. Spatio-temporal correlations are accounted for by a latent Gaussian variable that follows a Markovian temporal evolution combined with spatially correlated innovations. We propose to specify the temporal evolution using a vector autoregression that is motivated by an autoregressive convolution approach. Exploiting in a natural way the unidirectional flow of time, the model allows for non-separable covariance structures. Furthermore, the Markovian structure offers computational benefits. The model is space as well as time resolution consistent. We apply the model to three-hourly Swiss rainfall data, collected at 26 stations. As a side result, we introduce a new tool, the primary posterior predictive density, for assessing the fit of Bayesian models.

[1]  Peter Craven,et al.  Smoothing noisy data with spline functions , 1978 .

[2]  B. Sansó,et al.  A stochastic model for tropical rainfall at a single location , 1999 .

[3]  P. Guttorp,et al.  A non‐homogeneous hidden Markov model for precipitation occurrence , 1999 .

[4]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[5]  N. Cressie,et al.  Classes of nonseparable, spatio-temporal stationary covariance functions , 1999 .

[6]  A. Bárdossy,et al.  Multivariate stochastic downscaling model for generating daily precipitation series based on atmospheric circulation , 2002 .

[7]  J. Tobin Estimation of Relationships for Limited Dependent Variables , 1958 .

[8]  Kanti V. Mardia,et al.  On multimodality of the likelihood in the spatial linear model , 1989 .

[9]  James P. Hughes,et al.  A class of stochastic models for relating synoptic atmospheric patterns to regional hydrologic phenomena , 1994 .

[10]  Richard H. Jones,et al.  Models for Continuous Stationary Space-Time Processes , 1997 .

[11]  David R. Cox,et al.  A simple spatial-temporal model of rainfall , 1988, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[12]  A. Raftery,et al.  Probabilistic forecasts, calibration and sharpness , 2007 .

[13]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[14]  Thomas L. Bell,et al.  A space‐time stochastic model of rainfall for satellite remote‐sensing studies , 1987 .

[15]  James P. Hughes,et al.  A spatiotemporal model for downscaling precipitation occurrence and amounts , 1999 .

[16]  Michael L. Stein,et al.  Uniform Asymptotic Optimality of Linear Predictions of a Random Field Using an Incorrect Second-Order Structure , 1990 .

[17]  S. Chib,et al.  Understanding the Metropolis-Hastings Algorithm , 1995 .

[18]  Lucien Le Cam,et al.  A Stochastic Description of Precipitation , 1961 .

[19]  James P. Hughes,et al.  A hidden Markov model for downscaling synoptic atmospheric patterns to precipitation amounts , 2000 .

[20]  Adrian F. M. Smith,et al.  Bayesian computation via the gibbs sampler and related markov chain monte carlo methods (with discus , 1993 .

[21]  Chunsheng Ma,et al.  Families of spatio-temporal stationary covariance models , 2003 .

[22]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[23]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[24]  T. Gneiting Nonseparable, Stationary Covariance Functions for Space–Time Data , 2002 .

[25]  D. Wilks Maximum Likelihood Estimation for the Gamma Distribution Using Data Containing Zeros , 1990 .

[26]  Adrian E. Raftery,et al.  Probabilistic quantitative precipitation field forecasting using a two-stage spatial model , 2008, 0901.3484.

[27]  S. Frühwirth-Schnatter Data Augmentation and Dynamic Linear Models , 1994 .

[28]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[29]  N. Cressie,et al.  A dimension-reduced approach to space-time Kalman filtering , 1999 .

[30]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1972 .

[31]  R. Kohn,et al.  On Gibbs sampling for state space models , 1994 .

[32]  Montserrat Fuentes,et al.  Spatial–temporal mesoscale modeling of rainfall intensity using gage and radar data , 2008, 0901.3478.

[33]  A. Bárdossy,et al.  SPACE-TIME MODEL FOR DAILY RAINFALL USING ATMOSPHERIC CIRCULATION PATTERNS , 1992 .

[34]  M. Stein,et al.  A Bayesian analysis of kriging , 1993 .

[35]  Hans Kiinsch,et al.  State Space and Hidden Markov Models , 2000 .

[36]  A. V. Vecchia A general class of models for stationary two-dimensional random processes , 1985 .

[37]  A. Frigessi,et al.  Stationary space-time Gaussian fields and their time autoregressive representation , 2002 .

[38]  P. Diggle,et al.  Model‐based geostatistics , 2007 .

[39]  Brian D. Ripley,et al.  Problems with likelihood estimation of covariance functions of spatial Gaussian processes , 1987 .

[40]  D. Higdon Space and Space-Time Modeling using Process Convolutions , 2002 .

[41]  Pierre Ailliot,et al.  Space–time modelling of precipitation by using a hidden Markov model and censored Gaussian distributions , 2009 .

[42]  Roger Stern,et al.  Fitting Models to Daily Rainfall Data , 1982 .

[43]  B. Silverman,et al.  Nonparametric regression and generalized linear models , 1994 .

[44]  Richard Coe,et al.  A Model Fitting Analysis of Daily Rainfall Data , 1984 .

[45]  P. Brown,et al.  Blur‐generated non‐separable space–time models , 2000 .

[46]  Patrick Brown,et al.  Space–time calibration of radar rainfall data , 2001 .

[47]  Chris A. Glasbey,et al.  A latent Gaussian Markov random‐field model for spatiotemporal rainfall disaggregation , 2003 .

[48]  Michael F. Hutchinson,et al.  Stochastic space-time weather models from ground-based data , 1995 .

[49]  M. Aitkin Posterior Bayes Factors , 1991 .

[50]  P. Guttorp,et al.  Geostatistical Space-Time Models, Stationarity, Separability, and Full Symmetry , 2007 .

[51]  C. K. Stidd Estimating the precipitation climate , 1973 .

[52]  Phaedon C. Kyriakidis,et al.  Geostatistical Space–Time Models: A Review , 1999 .

[53]  Knut Sølna,et al.  Time Trend Estimation for a Geographic Region , 1996 .

[54]  Basil John Mason Numerical weather prediction , 1986, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[55]  Hao Zhang Inconsistent Estimation and Asymptotically Equal Interpolations in Model-Based Geostatistics , 2004 .

[56]  Edward C. Waymire,et al.  A Spectral Theory of Rainfall Intensity at the Meso‐β Scale , 1984 .

[57]  M. West,et al.  Bayesian forecasting and dynamic models , 1989 .

[58]  M. Stein Space–Time Covariance Functions , 2005 .

[59]  J. M. Sloughter,et al.  Probabilistic Quantitative Precipitation Forecasting Using Bayesian Model Averaging , 2007 .

[60]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. , 1908 .

[61]  D. Rubin Bayesianly Justifiable and Relevant Frequency Calculations for the Applied Statistician , 1984 .

[62]  P. Young,et al.  Time series analysis, forecasting and control , 1972, IEEE Transactions on Automatic Control.