A Dynamic Spatio-temporal Precipitation Model
暂无分享,去创建一个
[1] Peter Craven,et al. Smoothing noisy data with spline functions , 1978 .
[2] B. Sansó,et al. A stochastic model for tropical rainfall at a single location , 1999 .
[3] P. Guttorp,et al. A non‐homogeneous hidden Markov model for precipitation occurrence , 1999 .
[4] Bradley P. Carlin,et al. Bayesian measures of model complexity and fit , 2002 .
[5] N. Cressie,et al. Classes of nonseparable, spatio-temporal stationary covariance functions , 1999 .
[6] A. Bárdossy,et al. Multivariate stochastic downscaling model for generating daily precipitation series based on atmospheric circulation , 2002 .
[7] J. Tobin. Estimation of Relationships for Limited Dependent Variables , 1958 .
[8] Kanti V. Mardia,et al. On multimodality of the likelihood in the spatial linear model , 1989 .
[9] James P. Hughes,et al. A class of stochastic models for relating synoptic atmospheric patterns to regional hydrologic phenomena , 1994 .
[10] Richard H. Jones,et al. Models for Continuous Stationary Space-Time Processes , 1997 .
[11] David R. Cox,et al. A simple spatial-temporal model of rainfall , 1988, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[12] A. Raftery,et al. Probabilistic forecasts, calibration and sharpness , 2007 .
[13] W. K. Hastings,et al. Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .
[14] Thomas L. Bell,et al. A space‐time stochastic model of rainfall for satellite remote‐sensing studies , 1987 .
[15] James P. Hughes,et al. A spatiotemporal model for downscaling precipitation occurrence and amounts , 1999 .
[16] Michael L. Stein,et al. Uniform Asymptotic Optimality of Linear Predictions of a Random Field Using an Incorrect Second-Order Structure , 1990 .
[17] S. Chib,et al. Understanding the Metropolis-Hastings Algorithm , 1995 .
[18] Lucien Le Cam,et al. A Stochastic Description of Precipitation , 1961 .
[19] James P. Hughes,et al. A hidden Markov model for downscaling synoptic atmospheric patterns to precipitation amounts , 2000 .
[20] Adrian F. M. Smith,et al. Bayesian computation via the gibbs sampler and related markov chain monte carlo methods (with discus , 1993 .
[21] Chunsheng Ma,et al. Families of spatio-temporal stationary covariance models , 2003 .
[22] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[23] Adrian F. M. Smith,et al. Sampling-Based Approaches to Calculating Marginal Densities , 1990 .
[24] T. Gneiting. Nonseparable, Stationary Covariance Functions for Space–Time Data , 2002 .
[25] D. Wilks. Maximum Likelihood Estimation for the Gamma Distribution Using Data Containing Zeros , 1990 .
[26] Adrian E. Raftery,et al. Probabilistic quantitative precipitation field forecasting using a two-stage spatial model , 2008, 0901.3484.
[27] S. Frühwirth-Schnatter. Data Augmentation and Dynamic Linear Models , 1994 .
[28] Atsuyuki Okabe,et al. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.
[29] N. Cressie,et al. A dimension-reduced approach to space-time Kalman filtering , 1999 .
[30] Gwilym M. Jenkins,et al. Time series analysis, forecasting and control , 1972 .
[31] R. Kohn,et al. On Gibbs sampling for state space models , 1994 .
[32] Montserrat Fuentes,et al. Spatial–temporal mesoscale modeling of rainfall intensity using gage and radar data , 2008, 0901.3478.
[33] A. Bárdossy,et al. SPACE-TIME MODEL FOR DAILY RAINFALL USING ATMOSPHERIC CIRCULATION PATTERNS , 1992 .
[34] M. Stein,et al. A Bayesian analysis of kriging , 1993 .
[35] Hans Kiinsch,et al. State Space and Hidden Markov Models , 2000 .
[36] A. V. Vecchia. A general class of models for stationary two-dimensional random processes , 1985 .
[37] A. Frigessi,et al. Stationary space-time Gaussian fields and their time autoregressive representation , 2002 .
[38] P. Diggle,et al. Model‐based geostatistics , 2007 .
[39] Brian D. Ripley,et al. Problems with likelihood estimation of covariance functions of spatial Gaussian processes , 1987 .
[40] D. Higdon. Space and Space-Time Modeling using Process Convolutions , 2002 .
[41] Pierre Ailliot,et al. Space–time modelling of precipitation by using a hidden Markov model and censored Gaussian distributions , 2009 .
[42] Roger Stern,et al. Fitting Models to Daily Rainfall Data , 1982 .
[43] B. Silverman,et al. Nonparametric regression and generalized linear models , 1994 .
[44] Richard Coe,et al. A Model Fitting Analysis of Daily Rainfall Data , 1984 .
[45] P. Brown,et al. Blur‐generated non‐separable space–time models , 2000 .
[46] Patrick Brown,et al. Space–time calibration of radar rainfall data , 2001 .
[47] Chris A. Glasbey,et al. A latent Gaussian Markov random‐field model for spatiotemporal rainfall disaggregation , 2003 .
[48] Michael F. Hutchinson,et al. Stochastic space-time weather models from ground-based data , 1995 .
[49] M. Aitkin. Posterior Bayes Factors , 1991 .
[50] P. Guttorp,et al. Geostatistical Space-Time Models, Stationarity, Separability, and Full Symmetry , 2007 .
[51] C. K. Stidd. Estimating the precipitation climate , 1973 .
[52] Phaedon C. Kyriakidis,et al. Geostatistical Space–Time Models: A Review , 1999 .
[53] Knut Sølna,et al. Time Trend Estimation for a Geographic Region , 1996 .
[54] Basil John Mason. Numerical weather prediction , 1986, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[55] Hao Zhang. Inconsistent Estimation and Asymptotically Equal Interpolations in Model-Based Geostatistics , 2004 .
[56] Edward C. Waymire,et al. A Spectral Theory of Rainfall Intensity at the Meso‐β Scale , 1984 .
[57] M. West,et al. Bayesian forecasting and dynamic models , 1989 .
[58] M. Stein. Space–Time Covariance Functions , 2005 .
[59] J. M. Sloughter,et al. Probabilistic Quantitative Precipitation Forecasting Using Bayesian Model Averaging , 2007 .
[60] Georges Voronoi. Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. , 1908 .
[61] D. Rubin. Bayesianly Justifiable and Relevant Frequency Calculations for the Applied Statistician , 1984 .
[62] P. Young,et al. Time series analysis, forecasting and control , 1972, IEEE Transactions on Automatic Control.