Functional organization of the riboflavin biosynthesis operon from Bacillus subtilis SHgw

[1]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[2]  J. Belasco,et al.  Control of RNase E-mediated RNA degradation by 5′-terminal base pairing in E. coil , 1992, Nature.

[3]  T. Curran,et al.  Redox activation of Fos‐Jun DNA binding activity is mediated by a DNA repair enzyme. , 1992, The EMBO journal.

[4]  E. Meighen,et al.  The lux genes in Photobacterium leiognathi are closely linked with genes corresponding in sequence to riboflavin synthesis genes. , 1992, Biochemical and biophysical research communications.

[5]  R. A. Kreneva,et al.  Riboflavin operon of Bacillus subtilis: unusual symmetric arrangement of the regulatory region , 1992, Molecular and General Genetics MGG.

[6]  A. Fulco,et al.  Barbiturate-mediated regulation of expression of the cytochrome P450BM-3 gene of Bacillus megaterium by Bm3R1 protein. , 1992, The Journal of biological chemistry.

[7]  P. Artymiuk,et al.  The aconitase of Escherichia coli. Nucleotide sequence of the aconitase gene and amino acid sequence similarity with mitochondrial aconitases, the iron-responsive-element-binding protein and isopropylmalate isomerases. , 1992, European journal of biochemistry.

[8]  T. Henkin,et al.  Analysis of the Bacillus subtilis tyrS gene: conservation of a regulatory sequence in multiple tRNA synthetase genes , 1992, Journal of bacteriology.

[9]  A. Bacher,et al.  Biosynthesis of riboflavin. Studies on the mechanism of L-3,4-dihydroxy-2-butanone 4-phosphate synthase. , 1991, The Journal of biological chemistry.

[10]  R. Switzer,et al.  Functional organization and nucleotide sequence of the Bacillus subtilis pyrimidine biosynthetic operon. , 1991, The Journal of biological chemistry.

[11]  Y. Lu,et al.  Identification of aecA mutations in Bacillus subtilis as nucleotide substitutions in the untranslated leader region of the aspartokinase II operon. , 1991, Journal of general microbiology.

[12]  A. Pang,et al.  Cloning and characterization of a pair of novel genes that regulate production of extracellular enzymes in Bacillus subtilis , 1991, Journal of bacteriology.

[13]  A. Bacher,et al.  Studies on the 4-carbon precursor in the biosynthesis of riboflavin. Purification and properties of L-3,4-dihydroxy-2-butanone-4-phosphate synthase. , 1990, The Journal of biological chemistry.

[14]  R. A. Kreneva,et al.  Genetic mapping of regulatory mutations ofBacillus subtilis riboflavin operon , 1990, Molecular and General Genetics MGG.

[15]  R. Doi,et al.  Complex character of senS, a novel gene regulating expression of extracellular-protein genes of Bacillus subtilis , 1990, Journal of bacteriology.

[16]  A. Bacher,et al.  Riboflavin synthases of Bacillus subtilis. Purification and amino acid sequence of the alpha subunit. , 1990, The Journal of biological chemistry.

[17]  J. Hoch,et al.  The transition state transcription regulator abrB of Bacillus subtilis is a DNA binding protein. , 1989, The EMBO journal.

[18]  D. Ebbole,et al.  Interaction of a putative repressor protein with an extended control region of the Bacillus subtilis pur operon. , 1989, The Journal of biological chemistry.

[19]  M. Aldea,et al.  Transcript mapping using [35S]DNA probes, trichloroacetate solvent and dideoxy sequencing ladders: a rapid method for identification of transcriptional start points. , 1988, Gene.

[20]  M. Van Montagu,et al.  Interaction of the Bacillus subtilis phage phi 105 repressor DNA: a genetic analysis. , 1988, The EMBO journal.

[21]  P. Chomczyński,et al.  Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. , 1987, Analytical biochemistry.

[22]  A. Bacher,et al.  Heavy riboflavin synthase of Bacillus subtilis. Primary structure of the beta subunit. , 1987, The Journal of biological chemistry.

[23]  A. Alexandrov,et al.  Electron microscopic analysis of the transcription of the Bacillus subtilis riboflavin operon inserted into the hybrid plasmid pLP102 , 1986 .

[24]  J. Hoch,et al.  Revised genetic linkage map of Bacillus subtilis , 1985, Microbiological reviews.

[25]  G. Church,et al.  Genomic sequencing. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[26]  J. Spizizen,et al.  TRANSFORMATION OF BIOCHEMICALLY DEFICIENT STRAINS OF BACILLUS SUBTILIS BY DEOXYRIBONUCLEATE. , 1958, Proceedings of the National Academy of Sciences of the United States of America.

[27]  W. Eisenreich,et al.  Biosynthesis of Flavins , 1993 .

[28]  D. A. Perumov,et al.  [Unusual structure of the regulatory region of the riboflavin biosynthesis operon in Bacillus subtilis]. , 1990, Molekuliarnaia biologiia.

[29]  Mironov Vn,et al.  [Regulatory regions of the operon of riboflavin biosynthesis in Bacillus subtilis]. , 1988, Doklady Akademii nauk SSSR.

[30]  W. Bullock XL1-Blue: a high efficiency plasmid transforming recA Escherichia coli strain with beta-galactosidase selection. , 1987 .

[31]  R. Dale,et al.  A rapid single-stranded cloning strategy for producing a sequential series of overlapping clones for use in DNA sequencing: application to sequencing the corn mitochondrial 18 S rDNA. , 1985, Plasmid.