PEM fuel cell model parameters extraction based on moth-flame optimization

Abstract Accurate modelling of fuel cells (FC) is essential to better control their operation. In this article, we applied the butterfly flame optimization algorithm (MFO) taking into account the measurement uncertainty to estimate the parameters of the proton exchange membrane fuel cell (PEMFC) for their electrical equations based on current-voltage characteristics (I-V). To evaluate the performance of the proposed algorithm, three commercial PEMFCs with their experimental data (I-V) are considered such as 250 W, NedSstack PS6 and BCS 500-W. The cases of the models with 6, 7 and 11 parameters unknown and the learning technique have been treated. The performance analysis of the proposed method is carried out by applying the two sum squared errors (SSE) and root mean square error (RMSE) between the estimated and experimental data, the proposed approach is affirmed by its great superiority compared to the other methods recently published in Literature.

[1]  Xin-Jian Zhu,et al.  Parameter optimization for a PEMFC model with a hybrid genetic algorithm , 2006 .

[2]  Ramzi Ben Messaoud Extraction of uncertain parameters of single-diode model of a photovoltaic panel using simulated annealing optimization , 2020 .

[3]  Ned Djilali,et al.  An assessment of alkaline fuel cell technology , 2002 .

[4]  José C. Páscoa,et al.  Analysis of PEM (Polymer Electrolyte Membrane) fuel cell cathode two-dimensional modeling , 2014 .

[5]  Edson A. Ticianelli,et al.  Methods to Advance Technology of Proton Exchange Membrane Fuel Cells , 1988 .

[6]  Alireza Rezazadeh,et al.  An Innovative Global Harmony Search Algorithm for Parameter Identification of a PEM Fuel Cell Model , 2012, IEEE Transactions on Industrial Electronics.

[7]  Qiang Cao,et al.  Optimal parameter identification for the proton exchange membrane fuel cell using Satin Bowerbird optimizer , 2019, International Journal of Energy Research.

[8]  Pierre R. Roberge,et al.  Development and application of a generalised steady-state electrochemical model for a PEM fuel cell , 2000 .

[9]  Arnold Otto Isenberg,et al.  High-temperature solid oxide fuel cell — technical status , 1983 .

[10]  Sousso Kelouwani,et al.  Benchmark of proton exchange membrane fuel cell parameters extraction with metaheuristic optimization algorithms , 2019, Energy.

[11]  Ramzi Ben Messaoud Extraction of uncertain parameters of single and double diode model of a photovoltaic panel using Salp Swarm algorithm , 2020 .

[12]  Attia A. El-Fergany,et al.  Steady-State Modeling of Fuel Cells Based on Atom Search Optimizer , 2019, Energies.

[13]  Ahmed Fathy,et al.  Multi-Verse Optimizer for Identifying the Optimal Parameters of PEMFC Model , 2018 .

[14]  Hany M. Hasanien,et al.  Effective methodology based on neural network optimizer for extracting model parameters of PEM fuel cells , 2019, International Journal of Energy Research.

[15]  Attia A. El-Fergany,et al.  Electrical characterisation of proton exchange membrane fuel cells stack using grasshopper optimiser , 2018 .

[16]  Zehui Shao,et al.  Shark Smell Optimizer applied to identify the optimal parameters of the proton exchange membrane fuel cell model , 2019, Energy Conversion and Management.

[17]  Ning Wang,et al.  Cuckoo search algorithm with explosion operator for modeling proton exchange membrane fuel cells , 2019, International Journal of Hydrogen Energy.

[18]  Yan Cui,et al.  Accurate, efficient and reliable parameter extraction of PEM fuel cells using shuffled multi-simplexes search algorithm , 2020 .

[19]  Leandro dos Santos Coelho,et al.  A backtracking search algorithm combined with Burger's chaotic map for parameter estimation of PEMFC electrochemical model , 2014 .

[20]  Seyed Mohammad Mirjalili,et al.  Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm , 2015, Knowl. Based Syst..

[21]  Hany M. Hasanien,et al.  Semi-empirical PEM fuel cells model using whale optimization algorithm , 2019, Energy Conversion and Management.

[22]  Ramzi Ben Messaoud,et al.  Extraction of uncertain parameters of double-diode model of a photovoltaic panel using Ant Lion Optimization , 2020, SN Applied Sciences.

[23]  Attia A. El-Fergany,et al.  Extracting optimal parameters of PEM fuel cells using Salp Swarm Optimizer , 2018 .

[24]  M. A. Elhameed,et al.  Effective parameters’ identification for polymer electrolyte membrane fuel cell models using grey wolf optimizer , 2017 .

[25]  G. Eisman,et al.  The application of Dow Chemical's perfluorinated membranes in proton-exchange membrane fuel cells , 1990 .

[26]  Qi Li,et al.  Seeker optimization algorithm for global optimization: A case study on optimal modelling of proton exchange membrane fuel cell (PEMFC) , 2011 .

[27]  Gexiang Zhang,et al.  Parameter fitting of PEMFC models based on adaptive differential evolution , 2014 .

[28]  Alireza Rezazadeh,et al.  A new heuristic optimization algorithm for modeling of proton exchange membrane fuel cell: bird mating optimizer , 2013 .

[29]  Ahmed Fathy,et al.  A novel approach based on hybrid vortex search algorithm and differential evolution for identifying the optimal parameters of PEM fuel cell , 2020 .

[30]  Kang Li,et al.  An improved TLBO with elite strategy for parameters identification of PEM fuel cell and solar cell models , 2014 .

[31]  N. Rajasekar,et al.  A novel approach for fuel cell parameter estimation using simple Genetic Algorithm , 2015 .

[32]  Jing Pan,et al.  Designing advanced alkaline polymer electrolytes for fuel cell applications. , 2012, Accounts of chemical research.

[33]  J. C. Amphlett Performance Modeling of the Ballard Mark IV Solid Polymer Electrolyte Fuel Cell , 1995 .

[34]  N. Rajasekar,et al.  Application of flower pollination algorithm for enhanced proton exchange membrane fuel cell modelling , 2019, International Journal of Hydrogen Energy.

[35]  Wei Chen,et al.  Parameter estimation of PEM fuel cells employing the hybrid grey wolf optimization method , 2020 .

[36]  Zhi Wang,et al.  Parameter estimation of proton exchange membrane fuel cells using eagle strategy based on JAYA algorithm and Nelder-Mead simplex method , 2019, Energy.

[37]  Uday K. Chakraborty,et al.  PEM fuel cell modeling using differential evolution , 2012 .

[38]  B. Améduri,et al.  Polymeric materials as anion-exchange membranes for alkaline fuel cells , 2011 .

[39]  M. Mori,et al.  Structure and polarization characteristics of solid oxide fuel cell anodes , 1990 .

[40]  Alireza Rezazadeh,et al.  Optimization of PEMFC model parameters with a modified particle swarm optimization , 2011 .

[41]  R. Ben Messaoud Extraction of Uncertain Parameters of Double-Diode Model of a Photovoltaic Panel Using Simulated Annealing Optimization , 2019, The Journal of Physical Chemistry C.