The counting lemma for regular k-uniform hypergraphs

Szemeredi's Regularity Lemma proved to be a powerful tool in the area of extremal graph theory. Many of its applications are based on its accompanying Counting Lemma: If G is an e-partite graph with V (G) = V1 ∪ … ∪ Ve and sVis = n for all i ∈ [e], and all pairs (Vi, Vj) are e-regular of density d for 1 ≤ i ≤ j ≤ e and e L d, then G contains $(1\pm f_{\ell}(\varepsilon))d^{\ell \choose 2}\times n^{\ell}$ cliques Ke, where fe(e) → 0 as e → 0.Recently, Rodl and Skokan generalized Szemeredi's Regularity Lemma from graphs to k-uniform hypergraphs for arbitrary k ≥ 2. In this paper we prove a Counting Lemma accompanying the Rodl–Skokan hypergraph Regularity Lemma. Similar results were independently obtained by Gowers.Such results give combinatorial proofs to the density result of Szemeredi and some of the density theorems of Furstenberg and Katznelson. © 2006 Wiley Periodicals, Inc. Random Struct. Alg., 2006

[1]  Paul Erdös,et al.  On Some Sequences of Integers , 1936 .

[2]  K. F. Roth On Certain Sets of Integers , 1953 .

[3]  A. Hales,et al.  Regularity and Positional Games , 1963 .

[4]  E. Szemerédi On sets of integers containing k elements in arithmetic progression , 1975 .

[5]  H. Furstenberg Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions , 1977 .

[6]  H. Furstenberg,et al.  An ergodic Szemerédi theorem for commuting transformations , 1978 .

[7]  H. Furstenberg,et al.  An ergodic Szemerédi theorem for IP-systems and combinatorial theory , 1985 .

[8]  Vojtech Rödl,et al.  The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent , 1986, Graphs Comb..

[9]  H. Furstenberg,et al.  A density version of the Hales-Jewett theorem , 1991 .

[10]  Fan Chung,et al.  Regularity lemmas for hypergraphs and quasi-randomness , 1991 .

[11]  H. Prömel,et al.  Excluding Induced Subgraphs III: A General Asymptotic , 1992 .

[12]  Vojtech Rödl,et al.  The Uniformity Lemma for hypergraphs , 1992, Graphs Comb..

[13]  M. Simonovits,et al.  Szemeredi''s Regularity Lemma and its applications in graph theory , 1995 .

[14]  Vitaly Bergelson,et al.  Polynomial extensions of van der Waerden’s and Szemerédi’s theorems , 1996 .

[15]  Vojtech Rödl,et al.  Ramsey Properties of Random Hypergraphs , 1998, J. Comb. Theory, Ser. A.

[16]  Alan M. Frieze,et al.  Quick Approximation to Matrices and Applications , 1999, Comb..

[17]  Vojtech Rödl,et al.  An Algorithmic Regularity Lemma for Hypergraphs , 2000, SIAM J. Comput..

[18]  János Komlós,et al.  The Regularity Lemma and Its Applications in Graph Theory , 2000, Theoretical Aspects of Computer Science.

[19]  W. T. Gowers,et al.  A new proof of Szemerédi's theorem , 2001 .

[20]  W. T. Gowers,et al.  A NEW PROOF OF SZEMER ´ EDI'S THEOREM , 2001 .

[21]  Vojtech Rödl,et al.  The asymptotic number of triple systems not containing a fixed one , 2001, Discret. Math..

[22]  Vojtech Rödl,et al.  Extremal problems on set systems , 2002, Random Struct. Algorithms.

[23]  Vojtech Rödl,et al.  On characterizing hypergraph regularity , 2002, Random Struct. Algorithms.

[24]  V. Rödl,et al.  Extremal problems on set systems , 2002 .

[25]  Yoshiharu Kohayakawa,et al.  Hypergraphs, Quasi-randomness, and Conditions for Regularity , 2002, J. Comb. Theory, Ser. A.

[26]  Yoshiharu Kohayakawa,et al.  Efficient Testing of Hypergraphs , 2002, ICALP.

[27]  J. Solymosi Note on a Generalization of Roth’s Theorem , 2003 .

[28]  Yoshiharu Kohayakawa,et al.  Hereditary Properties of Triple Systems , 2003, Combinatorics, Probability and Computing.

[29]  Vojtech Rödl,et al.  Integer and fractional packings in dense 3-uniform hypergraphs , 2003, Random Struct. Algorithms.

[30]  Vojtech Rödl,et al.  Regularity properties for triple systems , 2003, Random Struct. Algorithms.

[31]  József Solymosi,et al.  A Note on a Question of Erdős and Graham , 2004, Combinatorics, Probability and Computing.

[32]  Mathias Schacht,et al.  On the Regularity Method for Hypergraphs , 2004 .

[33]  Vojtech Rödl,et al.  Regularity Lemma for k‐uniform hypergraphs , 2004, Random Struct. Algorithms.

[34]  Gábor N. Sárközy,et al.  On a Turán-type hypergraph problem of Brown, Erdos and T. Sós , 2005, Discret. Math..

[35]  Vojtech Rödl,et al.  An algorithmic version of the hypergraph regularity method , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[36]  Jozef Skokan,et al.  Counting subgraphs in quasi-random 4-uniform hypergraphs , 2005 .

[37]  Vojtech Rödl,et al.  Counting subgraphs in quasi-random 4-uniform hypergraphs , 2005, Random Struct. Algorithms.

[38]  Vojtech Rödl,et al.  Counting Small Cliques in 3-uniform Hypergraphs , 2005, Comb. Probab. Comput..

[39]  W. T. Gowers,et al.  Quasirandomness, Counting and Regularity for 3-Uniform Hypergraphs , 2006, Combinatorics, Probability and Computing.

[40]  Vojtech Rödl,et al.  The Ramsey number for hypergraph cycles I , 2006, J. Comb. Theory, Ser. A.

[41]  József Solymosi Dense Arrangements are Locally Very Dense. I , 2006, SIAM J. Discret. Math..

[42]  József Solymosi,et al.  Arithmetic Progressions in Sets with Small Sumsets , 2005, Combinatorics, Probability and Computing.

[43]  Mathias Schacht,et al.  Density theorems and extremal hypergraph problems , 2006 .

[44]  Terence Tao A Quantitative Ergodic Theory Proof of Szemerédi's Theorem , 2006, Electron. J. Comb..

[45]  Jozef Skokan,et al.  Applications of the regularity lemma for uniform hypergraphs , 2006 .

[46]  Vojtech Rödl,et al.  A Dirac-Type Theorem for 3-Uniform Hypergraphs , 2006, Combinatorics, Probability and Computing.

[47]  V. Rödl,et al.  Extremal Hypergraph Problems and the Regularity Method , 2006 .

[48]  RodlVojtech,et al.  Regular Partitions of Hypergraphs , 2007 .

[49]  W. T. Gowers,et al.  Hypergraph regularity and the multidimensional Szemerédi theorem , 2007, 0710.3032.

[50]  Vojtech Rödl,et al.  Integer and fractional packings of hypergraphs , 2007, J. Comb. Theory, Ser. B.

[51]  Vojtech Rödl,et al.  Note on the 3-graph counting lemma , 2008, Discret. Math..