The counting lemma for regular k-uniform hypergraphs
暂无分享,去创建一个
[1] Paul Erdös,et al. On Some Sequences of Integers , 1936 .
[2] K. F. Roth. On Certain Sets of Integers , 1953 .
[3] A. Hales,et al. Regularity and Positional Games , 1963 .
[4] E. Szemerédi. On sets of integers containing k elements in arithmetic progression , 1975 .
[5] H. Furstenberg. Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions , 1977 .
[6] H. Furstenberg,et al. An ergodic Szemerédi theorem for commuting transformations , 1978 .
[7] H. Furstenberg,et al. An ergodic Szemerédi theorem for IP-systems and combinatorial theory , 1985 .
[8] Vojtech Rödl,et al. The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent , 1986, Graphs Comb..
[9] H. Furstenberg,et al. A density version of the Hales-Jewett theorem , 1991 .
[10] Fan Chung,et al. Regularity lemmas for hypergraphs and quasi-randomness , 1991 .
[11] H. Prömel,et al. Excluding Induced Subgraphs III: A General Asymptotic , 1992 .
[12] Vojtech Rödl,et al. The Uniformity Lemma for hypergraphs , 1992, Graphs Comb..
[13] M. Simonovits,et al. Szemeredi''s Regularity Lemma and its applications in graph theory , 1995 .
[14] Vitaly Bergelson,et al. Polynomial extensions of van der Waerden’s and Szemerédi’s theorems , 1996 .
[15] Vojtech Rödl,et al. Ramsey Properties of Random Hypergraphs , 1998, J. Comb. Theory, Ser. A.
[16] Alan M. Frieze,et al. Quick Approximation to Matrices and Applications , 1999, Comb..
[17] Vojtech Rödl,et al. An Algorithmic Regularity Lemma for Hypergraphs , 2000, SIAM J. Comput..
[18] János Komlós,et al. The Regularity Lemma and Its Applications in Graph Theory , 2000, Theoretical Aspects of Computer Science.
[19] W. T. Gowers,et al. A new proof of Szemerédi's theorem , 2001 .
[20] W. T. Gowers,et al. A NEW PROOF OF SZEMER ´ EDI'S THEOREM , 2001 .
[21] Vojtech Rödl,et al. The asymptotic number of triple systems not containing a fixed one , 2001, Discret. Math..
[22] Vojtech Rödl,et al. Extremal problems on set systems , 2002, Random Struct. Algorithms.
[23] Vojtech Rödl,et al. On characterizing hypergraph regularity , 2002, Random Struct. Algorithms.
[24] V. Rödl,et al. Extremal problems on set systems , 2002 .
[25] Yoshiharu Kohayakawa,et al. Hypergraphs, Quasi-randomness, and Conditions for Regularity , 2002, J. Comb. Theory, Ser. A.
[26] Yoshiharu Kohayakawa,et al. Efficient Testing of Hypergraphs , 2002, ICALP.
[27] J. Solymosi. Note on a Generalization of Roth’s Theorem , 2003 .
[28] Yoshiharu Kohayakawa,et al. Hereditary Properties of Triple Systems , 2003, Combinatorics, Probability and Computing.
[29] Vojtech Rödl,et al. Integer and fractional packings in dense 3-uniform hypergraphs , 2003, Random Struct. Algorithms.
[30] Vojtech Rödl,et al. Regularity properties for triple systems , 2003, Random Struct. Algorithms.
[31] József Solymosi,et al. A Note on a Question of Erdős and Graham , 2004, Combinatorics, Probability and Computing.
[32] Mathias Schacht,et al. On the Regularity Method for Hypergraphs , 2004 .
[33] Vojtech Rödl,et al. Regularity Lemma for k‐uniform hypergraphs , 2004, Random Struct. Algorithms.
[34] Gábor N. Sárközy,et al. On a Turán-type hypergraph problem of Brown, Erdos and T. Sós , 2005, Discret. Math..
[35] Vojtech Rödl,et al. An algorithmic version of the hypergraph regularity method , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).
[36] Jozef Skokan,et al. Counting subgraphs in quasi-random 4-uniform hypergraphs , 2005 .
[37] Vojtech Rödl,et al. Counting subgraphs in quasi-random 4-uniform hypergraphs , 2005, Random Struct. Algorithms.
[38] Vojtech Rödl,et al. Counting Small Cliques in 3-uniform Hypergraphs , 2005, Comb. Probab. Comput..
[39] W. T. Gowers,et al. Quasirandomness, Counting and Regularity for 3-Uniform Hypergraphs , 2006, Combinatorics, Probability and Computing.
[40] Vojtech Rödl,et al. The Ramsey number for hypergraph cycles I , 2006, J. Comb. Theory, Ser. A.
[41] József Solymosi. Dense Arrangements are Locally Very Dense. I , 2006, SIAM J. Discret. Math..
[42] József Solymosi,et al. Arithmetic Progressions in Sets with Small Sumsets , 2005, Combinatorics, Probability and Computing.
[43] Mathias Schacht,et al. Density theorems and extremal hypergraph problems , 2006 .
[44] Terence Tao. A Quantitative Ergodic Theory Proof of Szemerédi's Theorem , 2006, Electron. J. Comb..
[45] Jozef Skokan,et al. Applications of the regularity lemma for uniform hypergraphs , 2006 .
[46] Vojtech Rödl,et al. A Dirac-Type Theorem for 3-Uniform Hypergraphs , 2006, Combinatorics, Probability and Computing.
[47] V. Rödl,et al. Extremal Hypergraph Problems and the Regularity Method , 2006 .
[48] RodlVojtech,et al. Regular Partitions of Hypergraphs , 2007 .
[49] W. T. Gowers,et al. Hypergraph regularity and the multidimensional Szemerédi theorem , 2007, 0710.3032.
[50] Vojtech Rödl,et al. Integer and fractional packings of hypergraphs , 2007, J. Comb. Theory, Ser. B.
[51] Vojtech Rödl,et al. Note on the 3-graph counting lemma , 2008, Discret. Math..