Tree-Based Conditional Portfolio Sorts: The Relation between Past and Future Stock Returns

Which variables provide independent information about the cross-section of future returns? Portfolio sorts and Fama-MacBeth regressions cannot easily answer this question when the number of candidate variables is large and when cross-terms might be important. We introduce a new method based on ideas from the machine learning literature that can be used in this context. Applying the method to past-return-based prediction of future returns, short-term returns become the most important predictors. A trading strategy based on our findings has an information ratio twice as high as a Fama-MacBeth regression accounting for two-way interactions. Transaction costs do not explain the results.

[1]  Lucia Alessi,et al.  Identifying Excessive Credit Growth and Leverage , 2014, SSRN Electronic Journal.

[2]  Fernando J. Corbacho,et al.  Nonlinear Support Vector Machines Can Systematically Identify Stocks with High and Low Future Returns , 2012, Algorithmic Finance.

[3]  Kevin P. Murphy,et al.  Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.

[4]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[5]  Pedro Barroso,et al.  Momentum Has Its Moments , 2014 .

[6]  Jeffrey Pontiff,et al.  Does Academic Research Destroy Stock Return Predictability? , 2015 .

[7]  Paolo Manasse,et al.  'Rules of Thumb' for Sovereign Debt Crises , 2005, SSRN Electronic Journal.

[8]  Clifford S. Asness,et al.  Fact, Fiction and Momentum Investing , 2014 .

[9]  David C. Yen,et al.  Predicting stock returns by classifier ensembles , 2011, Appl. Soft Comput..

[10]  E. Kleinberg An overtraining-resistant stochastic modeling method for pattern recognition , 1996 .

[11]  J. Lintner THE VALUATION OF RISK ASSETS AND THE SELECTION OF RISKY INVESTMENTS IN STOCK PORTFOLIOS AND CAPITAL BUDGETS , 1965 .

[12]  E. M. Kleinberg,et al.  Stochastic discrimination , 1990, Annals of Mathematics and Artificial Intelligence.

[13]  Donald B. Keim,et al.  Transactions costs and investment style: an inter-exchange analysis of institutional equity trades , 1997 .

[14]  Kent D. Daniel,et al.  Momentum Crashes , 2011 .

[15]  Joseph Chen,et al.  Breadth of Ownership and Stock Returns , 2001 .

[16]  Cha Zhang,et al.  Ensemble Machine Learning: Methods and Applications , 2012 .

[17]  R. Thaler,et al.  Does the Stock Market Overreact , 1985 .

[18]  Andrea Frazzini,et al.  Trading Costs of Asset Pricing Anomalies , 2012 .

[19]  Boyce Watkins,et al.  Riding the Wave of Sentiment: An Analysis of Return Consistency as a Predictor of Future Returns , 2003 .

[20]  Campbell R. Harvey,et al.  . . . And the Cross-Section of Expected Returns , 2014 .

[21]  J. Mossin EQUILIBRIUM IN A CAPITAL ASSET MARKET , 1966 .

[22]  Antonio Criminisi,et al.  Decision Forests for Computer Vision and Medical Image Analysis , 2013, Advances in Computer Vision and Pattern Recognition.

[23]  Yan Liu,et al.  …and the Cross-Section of Expected Returns , 2015 .

[24]  E. Fama Random Walks in Stock Market Prices , 1965 .

[25]  Another Look at Trading Costs and Short-Term Reversal Profits , 2011 .

[26]  Amit Goyal,et al.  Empirical cross-sectional asset pricing: a survey , 2012 .

[27]  W. Sharpe CAPITAL ASSET PRICES: A THEORY OF MARKET EQUILIBRIUM UNDER CONDITIONS OF RISK* , 1964 .

[28]  Andrew J. Patton,et al.  Monotonicity in asset returns: New tests with applications to the term structure, the CAPM, and portfolio sorts , 2010 .

[29]  Tin Kam Ho,et al.  The Random Subspace Method for Constructing Decision Forests , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Kent D. Daniel,et al.  NBER WORKING PAPER SERIES EVIDENCE ON THE CHARACTERISTICS OF CROSS SECTIONAL VARIATION IN STOCK RETURNS , 1996 .

[31]  Avanidhar Subrahmanyam,et al.  The Cross-Section of Expected Stock Returns: What Have We Learnt from the Past Twenty-Five Years of Research? , 2009 .

[32]  Guofu Zhou,et al.  A New Anomaly: The Cross-Sectional Profitability of Technical Analysis , 2011, Journal of Financial and Quantitative Analysis.

[33]  John R. M. Hand,et al.  The Remarkable Multidimensionality in the Cross-Section of Expected U.S. Stock Returns , 2013 .

[34]  E. Fama EFFICIENT CAPITAL MARKETS: A REVIEW OF THEORY AND EMPIRICAL WORK* , 1970 .

[35]  E. Fama,et al.  Multifactor Explanations of Asset Pricing Anomalies , 1996 .

[36]  E. Fama,et al.  Dissecting Anomalies , 2007 .

[37]  Mark Grinblatt,et al.  Predicting stock price movements from past returns: The role of consistency and tax-loss selling , 2004 .

[38]  Ronald L. Rivest,et al.  Constructing Optimal Binary Decision Trees is NP-Complete , 1976, Inf. Process. Lett..

[39]  Charles M. C. Lee,et al.  Price Momentum and Trading Volume , 1998 .

[40]  Tarun Chordia,et al.  Alternative factor specifications, security characteristics, and the cross-section of expected stock returns , 1998 .

[41]  Clifford S. Asness The Interaction of Value and Momentum Strategies , 1997 .

[42]  J. Lewellen The Cross Section of Expected Stock Returns , 2014 .

[43]  G. Kaminsky,et al.  Currency crises: Are they all the same?☆ , 2006 .

[44]  Ronnie Sadka,et al.  Seasonality in the cross-section of stock returns , 2008 .

[45]  Yuhang Xing,et al.  Default Risk in Equity Returns , 2004 .

[46]  Robert Novy-Marx,et al.  Is momentum really momentum , 2012 .

[47]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[48]  John H. Cochrane,et al.  Presidential Address: Discount Rates , 2011 .

[49]  W. McMeekin,et al.  Looking inside the Black Box , 2012 .

[50]  Robert Novy-Marx,et al.  The other side of value: The gross profitability premium. , 2013 .

[51]  R. Haugen,et al.  Commonality in the Determinants of Expected Stock Returns , 1996 .

[52]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[53]  E. Fama,et al.  Risk, Return, and Equilibrium: Empirical Tests , 1973, Journal of Political Economy.

[54]  E. Fama,et al.  A Five-Factor Asset Pricing Model , 2014 .

[55]  Pavel Bandarchuk Sources of Momentum Profits : Evidence on the Irrelevance of Characteristics ∗ , 2011 .

[56]  Narasimhan Jegadeesh,et al.  Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency , 1993 .

[57]  Leonid Kogan,et al.  Firm Characteristics and Empirical Factor Models: A Model-Mining Experiment , 2015 .

[58]  HoTin Kam The Random Subspace Method for Constructing Decision Forests , 1998 .

[59]  Narasimhan Jegadeesh,et al.  Evidence of Predictable Behavior of Security Returns , 1990 .

[60]  Rupa Duttagupta,et al.  Anatomy of banking crises in developing and emerging market countries , 2011 .

[61]  John R. M. Hand,et al.  The supraview of return predictive signals , 2013 .

[62]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .