Structural effect on degradability and in vivo contrast enhancement of polydisulfide Gd(III) complexes as biodegradable macromolecular MRI contrast agents.

[1]  E. Jeong,et al.  Modification of Gd‐DTPA cystine copolymers with PEG‐1000 optimizes pharmacokinetics and tissue retention for magnetic resonance angiography , 2007, Magnetic resonance in medicine.

[2]  Aaron M Mohs,et al.  Gadolinium(III)-based blood-pool contrast agents for magnetic resonance imaging: status and clinical potential , 2007, Expert opinion on drug delivery.

[3]  D. Parker,et al.  Effect of size and charge on pharmacokinetics and in vivo MRI contrast enhancement of biodegradable polydisulfide Gd(III) complexes. , 2006, Journal of controlled release : official journal of the Controlled Release Society.

[4]  A. Mohs,et al.  Polydisulfide Gd(III) chelates as biodegradable macromolecular magnetic resonance imaging contrast agents , 2006, International journal of nanomedicine.

[5]  D. Parker,et al.  PEG-g-poly(GdDTPA-co-L-cystine): effect of PEG chain length on in vivo contrast enhancement in MRI. , 2005, Biomacromolecules.

[6]  M. Schabel,et al.  Pharmacokinetics and Tissue Retention of (Gd-DTPA)-Cystamine Copolymers, a Biodegradable Macromolecular Magnetic Resonance Imaging Contrast Agent , 2005, Pharmaceutical Research.

[7]  D. Parker,et al.  Contrast‐enhanced MRI with new biodegradable macromolecular Gd(III) complexes in tumor‐bearing mice , 2005, Magnetic resonance in medicine.

[8]  D. Parker,et al.  Extracellular biodegradable macromolecular gadolinium(III) complexes for MRI , 2004, Magnetic resonance in medicine.

[9]  D. Parker,et al.  Poly(l-glutamic acid) Gd(III)-DOTA conjugate with a degradable spacer for magnetic resonance imaging. , 2003, Bioconjugate chemistry.

[10]  R. Brasch,et al.  MRI characterization of tumors and grading angiogenesis using macromolecular contrast media: status report. , 2000, European journal of radiology.

[11]  R. Lauffer,et al.  Gadolinium(III) Chelates as MRI Contrast Agents: Structure, Dynamics, and Applications. , 1999, Chemical reviews.

[12]  F. Dosio,et al.  New coupling reagents for the preparation of disulfide cross-linked conjugates with increased stability. , 1997, Bioconjugate chemistry.

[13]  M. Brechbiel,et al.  Biodistribution and metabolism of targeted and nontargeted protein-chelate-gadolinium complexes: evidence for gadolinium dissociation in vitro and in vivo. , 1995, Magnetic resonance imaging.

[14]  M. Welch,et al.  Evidence of gadolinium dissociation from protein-DTPA-gadolinium complexes. , 1994, Investigative radiology.

[15]  A. Kung,et al.  Enhanced stability in vitro and in vivo of immunoconjugates prepared with 5-methyl-2-iminothiolane. , 1994, Bioconjugate chemistry.

[16]  B. Sébille,et al.  Reactivity of 42 disulfides with thiol group of human haemoglobin and human serum albumin. , 1993, International journal of biological macromolecules.

[17]  R. Edelman,et al.  Magnetic resonance imaging (2) , 1993, The New England journal of medicine.

[18]  P. Ueland,et al.  Determination of the in vivo redox status of cysteine, cysteinylglycine, homocysteine, and glutathione in human plasma. , 1992, Analytical biochemistry.

[19]  J. Folkman,et al.  Tumor angiogenesis and metastasis--correlation in invasive breast carcinoma. , 1991, The New England journal of medicine.

[20]  L. Greenfield,et al.  Thiol-containing cross-linking agent with enhanced steric hindrance. , 1990, Bioconjugate chemistry.

[21]  D. Blakey,et al.  New coupling agents for the synthesis of immunotoxins containing a hindered disulfide bond with improved stability in vivo. , 1987, Cancer research.

[22]  A. Weiss,et al.  E. Fukushima, St. B. W. Roeder: Experimental Pulse NMR. A Nuts and Bolts Approach. Addison‐Wesley Publ. Comp., Inc., Reading, Massachusetts 1981. 539 Seiten, Preis: US $ 34.50 , 1983 .

[23]  D. Hupe,et al.  EFFECT OF CHARGED SUBSTITUENTS ON RATES OF THE THIOL-DISULFIDE INTERCHANGE REACTION , 1980 .