Solar-driven production of lime for ordinary Portland cement formulation

[1]  C. Sobrino,et al.  A review of solar thermal energy storage in beds of particles: Packed and fluidized beds , 2019, Solar Energy.

[2]  R. Chacartegui,et al.  Process integration of Calcium-Looping thermochemical energy storage system in concentrating solar power plants , 2018, Energy.

[3]  S. Abanades,et al.  Design and demonstration of a high temperature solar-heated rotary tube reactor for continuous particles calcination , 2018 .

[4]  P. Salatino,et al.  Effect of steam on the performance of Ca-based sorbents in calcium looping processes , 2017 .

[5]  Fabio Montagnaro,et al.  Directly irradiated fluidized bed reactors for thermochemical processing and energy storage: Application to calcium looping , 2017 .

[6]  Daniel J. Gauthier,et al.  Design and performance of a multistage fluidised bed heat exchanger for particle-receiver solar power plants with storage , 2017 .

[7]  Ricardo Chacartegui,et al.  Optimizing the CSP-Calcium Looping integration for Thermochemical Energy Storage , 2017 .

[8]  L. I. Díez,et al.  Use of oxyfuel combustion ash for the production of blended cements: A synergetic solution toward reduction of CO2 emissions , 2017 .

[9]  Jiří Jaromír Klemeš,et al.  Reducing Greenhouse Gasses Emissions by Fostering the Deployment of Alternative Raw Materials and Energy Sources in the Cleaner Cement Manufacturing Process , 2016 .

[10]  L. Cabeza,et al.  Review of technology: Thermochemical energy storage for concentrated solar power plants , 2016 .

[11]  Chao Li,et al.  Thermodynamic analysis of CO2 capture by calcium looping process driven by coal and concentrated solar power , 2016 .

[12]  Fabio Montagnaro,et al.  Low-CO2 Cements from Fluidized Bed Process Wastes and Other Industrial By-Products , 2016 .

[13]  P. Salatino,et al.  Heat transfer in directly irradiated fluidized beds , 2016 .

[14]  P. Salatino,et al.  Improving the thermal performance of fluidized beds for concentrated solar power and thermal energy storage , 2016 .

[15]  R. Banerjee,et al.  A review of solar thermochemical processes , 2016 .

[16]  Li Hui,et al.  On the future of Chinese cement industry , 2015 .

[17]  Liu Cao,et al.  Quantifying CO2 emissions from China’s cement industry , 2015 .

[18]  Fabio Montagnaro,et al.  A model of integrated calcium looping for CO2 capture and concentrated solar power , 2015 .

[19]  Fabio Montagnaro,et al.  Calcium looping spent sorbent as a limestone replacement in the manufacture of portland and calcium sulfoaluminate cements. , 2015, Environmental science & technology.

[20]  Xuelei Zhang,et al.  Performance assessment of CO2 capture with calcination carbonation reaction process driven by coal and concentrated solar power , 2014 .

[21]  John Kline,et al.  Cement and carbon emissions , 2014 .

[22]  Gilles Flamant,et al.  Technical and Economic Feasibility Analysis of Using Concentrated Solar Thermal Technology in the Cement Production Process: Hybrid Approach—A Case Study , 2014 .

[23]  A. Deydier,et al.  A review on high temperature thermochemical heat energy storage , 2014 .

[24]  W. Lipiński,et al.  Towards Solar Thermochemical Carbon Dioxide Capture via Calcium Oxide Looping: A Review , 2014 .

[25]  Fabio Montagnaro,et al.  Spent limestone sorbent from calcium looping cycle as a raw material for the cement industry , 2014 .

[26]  Fabio Montagnaro,et al.  Fluidized bed calcium looping cycles for CO2 capture under oxy-firing calcination conditions: Part 2. Assessment of dolomite vs. limestone , 2013 .

[27]  Wojciech Lipiński,et al.  Thermodynamic analysis of solar thermochemical CO2 capture via carbonation/calcination cycle with heat recovery , 2012 .

[28]  Susan E.B. Edwards,et al.  Calcium looping in solar power generation plants , 2012 .

[29]  K. Dam-Johansen,et al.  Cement Formation: A Success Story in a Black Box: High Temperature Phase Formation of Portland Cement Clinker , 2012 .

[30]  N. Gokon,et al.  Thermochemical two-step water splitting by internally circulating fluidized bed of NiFe2O4 particles: Successive reaction of thermal-reduction and water-decomposition steps , 2011 .

[31]  Graziella Bernardo,et al.  The use of oil well-derived drilling waste and electric arc furnace slag as alternative raw materials in clinker production , 2007 .

[32]  W. Lipiński,et al.  Solar chemical reactor technology for industrial production of lime , 2006 .

[33]  Wojciech Lipiński,et al.  Multitube Rotary Kiln for the Industrial Solar Production of Lime , 2005 .

[34]  A. Steinfeld,et al.  Steam-gasification of coal in a fluidized-bed/packed-bed reactor exposed to concentrated thermal radiation-modeling and experimental validation , 2005 .

[35]  Anton Meier,et al.  Economic evaluation of the industrial solar production of lime , 2005 .

[36]  E. Gartner Industrially interesting approaches to “low-CO2” cements ☆ , 2004 .

[37]  Wojciech Lipiński,et al.  Design and experimental investigation of a horizontal rotary reactor for the solar thermal production of lime , 2004 .

[38]  A. Imhof,et al.  Decomposition of limestone in a solar reactor , 1996 .

[39]  R. Koenigsdorff,et al.  Results of and prospects for research on direct-absorption fluidized bed solar receivers , 1991 .

[40]  A. Imhof The cyclone reactor : an atmospheric open solar reactor , 1991 .

[41]  G. Flamant Theoretical and experimental study of radiant heat transfer in a solar fluidized‐bed receiver , 1982 .

[42]  Tatsuya Kodama,et al.  A CFD-DEM study of hydrodynamics with heat transfer in a gas-solid fluidized bed reactor for solar thermal applications , 2018 .

[43]  P. Salatino,et al.  An experimental characterization of Calcium Looping integrated with concentrated solar power , 2018 .

[44]  Denvid Lau,et al.  Chemical Technologies for Modern Concrete Production , 2017 .

[45]  N. Gokon,et al.  Steam gasification of coal cokes by internally circulating fluidized-bed reactor by concentrated Xe-light radiation for solar syngas production , 2015 .

[46]  Nicholas H. Florin,et al.  Integrating calcium looping CO2 capture with the manufacture of cement , 2013 .

[47]  A. Imhof,et al.  Entsäuerung von Kalksteinpulver in einem Solarreaktor , 2000 .

[48]  A. Imhof,et al.  Das Solar-Zementwerk : eine interessante Herausforderung für Industrie und Wissenschaft , 2000 .

[49]  N. Khraishi,et al.  Thermal decomposition of limestone and gypsum by solar energy , 1988 .

[50]  D. Archer,et al.  Heat transfer in a fluidized-bed solar thermal receiver , 1983 .

[51]  G. Flamant,et al.  High temperature solar gas heating comparison between packed and fluidized bed receivers. I , 1983 .

[52]  U. Ludwig,et al.  Investigation relating to the determination of calcium hydroxide by the Franke method , 1983 .

[53]  Gilles Flamant,et al.  Experimental aspects of the thermochemical conversion of solar energy; Decarbonation of CaCO3 , 1980 .

[54]  G. Flamant,et al.  52 Decarbonation of calcite and phosphate rock in solar chemical reactors. , 1980 .

[55]  R. Bogue The chemistry of Portland cement , 1947 .