Parameter-free prediction of phase transition in PbTiO3 through combination of quantum mechanics and statistical mechanics

[1]  A. Zunger,et al.  Density Functional Thermodynamics Description of Spin, Phonon and Displacement Degrees of Freedom in Antiferromagnetic-to-Paramagnetic Phase Transition in YNiO3 , 2022, Materials Today Physics.

[2]  Zirui Liu Theory of cross phenomena and their coefficients beyond Onsager theorem , 2022, Materials Research Letters.

[3]  V. Shvartsman,et al.  Interplay of domain structure and phase transitions: theory, experiment and functionality , 2021, Journal of physics. Condensed matter : an Institute of Physics journal.

[4]  D. Meier,et al.  Ferroelectric domain walls for nanotechnology , 2021, Nature Reviews Materials.

[5]  Zi-kui Liu,et al.  Zentropy Theory for Positive and Negative Thermal Expansion , 2021, Journal of Phase Equilibria and Diffusion.

[6]  Zi-kui Liu,et al.  DFTTK: Density Functional Theory ToolKit for high-throughput lattice dynamics calculations , 2021, Calphad.

[7]  A. Bell,et al.  Highly charged 180 degree head-to-head domain walls in lead titanate , 2020, Communications Physics.

[8]  J. Junquera,et al.  First-principles study of two-dimensional electron and hole gases at the head-to-head and tail-to-tail 180∘ domain walls in PbTiO3 ferroelectric thin films , 2020, Physical Review B.

[9]  Anton Van der Ven,et al.  First-Principles Statistical Mechanics of Multicomponent Crystals , 2018, Annual Review of Materials Research.

[10]  Javier Junquera,et al.  Second-principles method for materials simulations including electron and lattice degrees of freedom , 2015, 1511.07675.

[11]  Abbas Ali Saberi,et al.  Recent advances in percolation theory and its applications , 2015, 1504.02898.

[12]  Shun-Li Shang,et al.  Nature of ferroelectric-paraelectric phase transition and origin of negative thermal expansion in PbTi O 3 , 2015 .

[13]  Yi Wang,et al.  Thermal Expansion Anomaly Regulated by Entropy , 2014, Scientific Reports.

[14]  Zi-kui Liu,et al.  Cation Disorder Regulation by Microstate Configurational Entropy in Photovoltaic Absorber Materials Cu2ZnSn(S,Se)4 , 2014 .

[15]  John D. Budai,et al.  Phonon localization drives polar nanoregions in a relaxor ferroelectric , 2014, Nature Communications.

[16]  U. Waghmare,et al.  Domain formation and dielectric response in PbTiO$_3$: A first-principles free energy landscape analysis , 2013 .

[17]  Donghwa Lee,et al.  Structure and energetics of 180° domain walls in PbTiO3 by density functional theory , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[18]  Zi-kui Liu,et al.  Effects of spin structures on Fermi surface topologies in BaFe2As2 , 2011 .

[19]  Zi-kui Liu,et al.  Magnetic thermodynamics of fcc Ni from first-principles partition function approach , 2010 .

[20]  Zi-kui Liu,et al.  Magnetic excitation and thermodynamics of BaFe2As2 , 2010 .

[21]  Zi-kui Liu,et al.  Thermodynamic fluctuations between magnetic states from first-principles phonon calculations: The case of bcc Fe , 2010 .

[22]  S. Shang,et al.  A mixed-space approach to first-principles calculations of phonon frequencies for polar materials , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[23]  Zi-kui Liu,et al.  First-principles thermodynamics from phonon and Debye model: Application to Ni and Ni3Al , 2010 .

[24]  S. Shang,et al.  A thermodynamic framework for a system with itinerant-electron magnetism , 2009 .

[25]  S. Shang,et al.  Thermodynamic fluctuations in magnetic states: Fe3Pt as a prototype , 2009, 0903.4170.

[26]  Long-Qing Chen,et al.  Thermodynamics of the Ce ?a transition: Density-functional study , 2008 .

[27]  T. Kitamura,et al.  Ab initio study of stress-induced domain switching in PbTiO3 , 2008 .

[28]  Russell J. Hemley,et al.  Origin of morphotropic phase boundaries in ferroelectrics , 2008, Nature.

[29]  Zi-kui Liu,et al.  Thermodynamic properties of Al, Ni, NiAl, and Ni3Al from first-principles calculations , 2004 .

[30]  D. Vanderbilt,et al.  Ab initio study of ferroelectric domain walls in PbTiO 3 , 2001, cond-mat/0109257.

[31]  D. Chadi,et al.  Ab initio study of dipolar defects and 180° domain walls in PbTiO3 , 2000 .

[32]  Ronald E. Cohen,et al.  Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics , 2000, Nature.

[33]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[34]  U. Waghmare,et al.  Ab initio statistical mechanics of the ferroelectric phase transition in PbTiO 3 , 1996, mtrl-th/9608001.

[35]  E. Stern,et al.  The ferroelectric phase transition in PbTiO3 from a local perspective , 1995 .

[36]  Susanne Stemmer,et al.  Atomistic structure of 90° domain walls in ferroelectric PbTiO3 thin films , 1995 .

[37]  Rabe,et al.  Phase transitions in BaTiO3 from first principles. , 1994, Physical review letters.

[38]  R. Resta Theory of the electric polarization in crystals , 1992 .

[39]  Leslie E. Cross,et al.  Thermodynamic theory of PbTiO3 , 1987 .

[40]  Joseph Callaway,et al.  Inhomogeneous Electron Gas , 1973 .

[41]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[42]  S. Hoshino,et al.  On the Phase Transition in Lead Titanate , 1951 .

[43]  A. F. Devonshire XCVI. Theory of barium titanate , 1949 .

[44]  Zi-kui Liu,et al.  Quantifying the Degree of Disorder and Associated Phenomena in Materials Through Zentropy: Illustrated with Invar Fe 3Pt , 2022, SSRN Electronic Journal.

[45]  W. Marsden I and J , 2012 .

[46]  H. Hees,et al.  Statistical Physics , 2004 .

[47]  David Vanderbilt,et al.  Theory of Polarization: A Modern Approach , 2007 .

[48]  Jean-Marc Triscone,et al.  Physics of ferroelectrics : a modern perspective , 2007 .