Global well-posedness of the KP-I initial-value problem in the energy space

We prove that the KP-I initial-value problem $$\begin{cases} \partial_tu+\partial_x^3u-\partial_x^{-1}\partial_y^2u+\partial_x(u^2/2)=0 \,\text{ on }\,\mathbb{R}^2_{x,y}\times\mathbb{R}_t;\\ u(0)=\phi, \end{cases}$$ is globally well-posed in the energy space $$\mathbf{E}^1(\mathbb{R}^2)=\big\{\phi:\mathbb{R}^2\to\mathbb{R}: \|\phi\|_{\mathbf{E}^1(\mathbb{R}^2)}\approx\|\phi\|_{L^2}+\|\partial_x\phi\|_{L^2}+\big\|\partial_x^{-1}\partial_y\phi\big\|_{L^2}<\infty\big\}.$$

[1]  N. Tzvetkov,et al.  Transverse nonlinear instability for two-dimensional dispersive models , 2006, math/0612494.

[2]  Frank Merle,et al.  Asymptotic stability of solitons of the subcritical gKdV equations revisited , 2005 .

[3]  Andrei V. Faminskii,et al.  The Cauchy problem for the Kadomtsev-Petviashvili equation , 1990 .

[4]  Carlos E. Kenig,et al.  On the local and global well-posedness theory for the KP-I equation , 2004 .

[5]  Luis Vega,et al.  The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices , 1993 .

[6]  Jean-Claude Saut,et al.  Well-posedness and ill-posedness results for the Kadomtsev-Petviashvili-I equation , 2002 .

[7]  H. Takaoka,et al.  On the local regularity of the Kadomtsev-Petviashvili-II equation , 2001 .

[8]  Jean-Claude Saut,et al.  Uniform decay estimates for a class of oscillatory integrals and applications , 1999, Differential and Integral Equations.

[9]  C. Kenig,et al.  Weighted Low-Regularity Solutions of the KP-I Initial Value Problem , 2007 .

[10]  Jean Bourgain,et al.  On the Cauchy problem for the Kadomstev-Petviashvili equation , 1993 .

[11]  M. Weinstein Lyapunov stability of ground states of nonlinear dispersive evolution equations , 1986 .

[12]  P. Souganidis,et al.  Stability and instability of solitary waves of Korteweg-de Vries type , 1987, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[13]  Rafael José Iório,et al.  On equations of KP-type , 1998, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[14]  Mark J. Ablowitz,et al.  Solitons and the Inverse Scattering Transform , 1981 .

[15]  P. Lions,et al.  Orbital stability of standing waves for some nonlinear Schrödinger equations , 1982 .

[16]  J. Saut,et al.  Solitary waves of generalized Kadomtsev-Petviashvili equations , 1997 .

[17]  Yvan Martel,et al.  Asymptotic Stability of Solitons¶for Subcritical Generalized KdV Equations , 2001 .

[18]  D. Tataru,et al.  A Priori Bounds for the 1D Cubic NLS in Negative Sobolev Spaces , 2006, math/0612717.

[19]  D. Tataru Local and global results for wave maps I , 1998 .

[20]  Y. Martel,et al.  Asymptotic stability of solitons for the Benjamin-Ono equation , 2008, 0803.3683.

[21]  Robert L. Pego,et al.  On the transverse instability of solitary waves in the Kadomtsev-Petviashvili equation , 1997 .

[22]  Jean-Claude Saut,et al.  Global well-posedness for the KP-I equation , 2002 .

[23]  C. Kenig,et al.  Well‐posedness and scattering results for the generalized korteweg‐de vries equation via the contraction principle , 1993 .

[24]  J. Bourgain,et al.  Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations , 1993 .

[25]  M. Ablowitz,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering , 1992 .

[26]  M. Weinstein Existence and dynamic stability of solitary wave solutions of equations arising in long wave propagation , 1987 .

[27]  J. Bona,et al.  The initial-value problem for the Korteweg-de Vries equation , 1975, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[28]  J. Saut,et al.  Correction: Global well-posedness for the KP-I equation , 2004 .

[29]  Sergiu Klainerman,et al.  Space-time estimates for null forms and the local existence theorem , 1993 .