Spin-Based Majority Computation

The downscaling of Complementary Metal Oxide Semiconductor (CMOS) devices will come to an end in the following decade. This has accelerated research that explores new device concepts that can help the semiconductor industry move forward, beyond the CMOS roadmap. Such device concepts include spin-based technologies which have a propensity to low-energy operation and non-volatility. More specifically, Spin Wave Devices (SWD) and Spin Torque Majority Gates (STMG) can be used to construct logic circuits that efficiently use a majority gate primitive. This leads to logic optimization that can enable more compact and energy-efficient circuits. In this chapter we describe operating principles and dynamic behavior of SWD and STMG. We present circuit benchmarking and outlook for these two concepts and discuss the action points that will enable them.

[1]  Kang L. Wang,et al.  Electric-poling-induced magnetic anisotropy and electric-field-induced magnetization reorientation in magnetoelectric Ni/(011) [Pb(Mg1/3Nb2/3)O3](1-x)-[PbTiO3]x heterostructure , 2011 .

[2]  Alternate spintronic analog of the electro-optic modulator , 2004, cond-mat/0404337.

[3]  S. J. Hermsdoerfer,et al.  Spin-wave propagation in a microstructured magnonic crystal , 2009, 0911.1920.

[4]  S. Yuasa,et al.  Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions , 2004, Nature materials.

[5]  T. Ghani,et al.  Proposal of a Spin Torque Majority Gate Logic , 2010, IEEE Electron Device Letters.

[6]  C. Adelmann,et al.  All electrical propagating spin wave spectroscopy with broadband wavevector capability , 2016, 1602.08091.

[7]  C. Adelmann,et al.  Spin waves for interconnect applications , 2017, 2017 IEEE International Interconnect Technology Conference (IITC).

[8]  S. Datta,et al.  Proposal for an all-spin logic device with built-in memory. , 2010, Nature nanotechnology.

[9]  T. Schulthess,et al.  Spin-dependent tunneling conductance of Fe | MgO | Fe sandwiches , 2001 .

[10]  Kang L. Wang,et al.  Electric-field-induced spin wave generation using multiferroic magnetoelectric cells , 2014 .

[11]  B. Hillebrands,et al.  Brillouin light scattering studies of confined spin waves: linear and nonlinear confinement , 2001 .

[12]  Wolfgang Porod,et al.  Device and Architecture Outlook for Beyond CMOS Switches , 2010, Proceedings of the IEEE.

[13]  E. Rashba,et al.  Oscillatory effects and the magnetic susceptibility of carriers in inversion layers , 1984 .

[14]  S. Yuasa,et al.  Giant tunnel magnetoresistance in magnetic tunnel junctions with a crystalline MgO(0 0 1) barrier , 2007 .

[15]  Kang L. Wang,et al.  Non-volatile magnonic logic circuits engineering , 2010, 1012.4768.

[16]  M. Julliere Tunneling between ferromagnetic films , 1975 .

[17]  Dmitri E. Nikonov,et al.  Benchmarking of Beyond-CMOS Exploratory Devices for Logic Integrated Circuits , 2015, IEEE Journal on Exploratory Solid-State Computational Devices and Circuits.

[18]  Azad Naeemi,et al.  Non-volatile Clocked Spin Wave Interconnect for Beyond-CMOS Nanomagnet Pipelines , 2015, Scientific Reports.

[19]  J. Slonczewski Current-driven excitation of magnetic multilayers , 1996 .

[20]  S. Urazhdin,et al.  Excitation of coherent propagating spin waves by pure spin currents , 2016, Nature Communications.

[21]  Dmitri E. Nikonov,et al.  Overview of Beyond-CMOS Devices and a Uniform Methodology for Their Benchmarking , 2013, Proceedings of the IEEE.

[22]  Dmitri E. Nikonov,et al.  Magnetoelectric spin wave amplifier for spin wave logic circuits , 2009 .

[23]  Dmitri E. Nikonov,et al.  Switching efficiency improvement in spin torque majority gates , 2014 .

[24]  C. Ross,et al.  Low Energy Magnetic Domain Wall Logic in Short, Narrow, Ferromagnetic Wires , 2012, IEEE Magnetics Letters.

[25]  B. Leven,et al.  Design of a spin-wave majority gate employing mode selection , 2014, 1408.3235.

[26]  H. Beere,et al.  All-electric all-semiconductor spin field-effect transistors. , 2015, Nature nanotechnology.

[27]  R. Cowburn,et al.  Room temperature magnetic quantum cellular automata , 2000, Science.

[28]  M. Kostylev,et al.  Realization of spin-wave logic gates , 2007, 0711.4720.

[29]  Yun Shang,et al.  An Optimized Majority Logic Synthesis Methodology for Quantum-Dot Cellular Automata , 2010, IEEE Transactions on Nanotechnology.

[30]  Iuliana Radu,et al.  Toward error-free scaled spin torque majority gates , 2016 .

[31]  C. Chappert,et al.  Propagation of magnetic vortices using nanocontacts as tunable attractors. , 2014, Nature nanotechnology.

[32]  C. A. Ross,et al.  Logic circuit prototypes for three-terminal magnetic tunnel junctions with mobile domain walls , 2016, Nature Communications.

[33]  B. Leven,et al.  Spin-wave logic devices based on isotropic forward volume magnetostatic waves , 2015, 1503.04101.

[34]  Wolfgang Porod,et al.  Non-boolean computing based on linear waves and oscillators , 2015, 2015 45th European Solid State Device Research Conference (ESSDERC).

[35]  S. Datta,et al.  Electronic analog of the electro‐optic modulator , 1990 .

[36]  D. Griffiths,et al.  Introduction to Quantum Mechanics , 1960 .

[37]  K.L. Wang,et al.  Spin Wave Magnetic NanoFabric: A New Approach to Spin-Based Logic Circuitry , 2008, IEEE Transactions on Magnetics.

[38]  Rudy Lauwereins,et al.  Exchange-driven Magnetic Logic , 2017, Scientific Reports.

[39]  C. Graham,et al.  Introduction to Magnetic Materials , 1972 .

[40]  James A. Hutchby,et al.  Limits to binary logic switch scaling - a gedanken model , 2003, Proc. IEEE.

[41]  M. Kostylev,et al.  Tunneling of dipolar spin waves through a region of inhomogeneous magnetic field. , 2004, Physical review letters.

[42]  Burkhard Hillebrands,et al.  Spin Dynamics in Confined Magnetic Structures , 2002 .

[43]  Wolfgang Porod,et al.  Nanocomputing by field-coupled nanomagnets , 2002 .

[44]  W. Pauli,et al.  Über den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren , 1925 .

[45]  G. Schmidt,et al.  Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor , 1999, cond-mat/9911014.

[46]  Daisuke Suzuki,et al.  Nonvolatile Logic-in-Memory LSI Using Cycle-Based Power Gating and its Application to Motion-Vector Prediction , 2015, IEEE Journal of Solid-State Circuits.

[47]  S. Chikazumi Physics of ferromagnetism , 1997 .

[48]  Doris Schmitt-Landsiedel,et al.  Experimental Demonstration of a 1-Bit Full Adder in Perpendicular Nanomagnetic Logic , 2013, IEEE Transactions on Magnetics.

[49]  Dmitri E. Nikonov,et al.  Material Targets for Scaling All Spin Logic , 2012, ArXiv.

[50]  P. Dirac Principles of Quantum Mechanics , 1982 .

[51]  L. Pileggi,et al.  Novel STT-MTJ Device Enabling All-Metallic Logic Circuits , 2012, IEEE Transactions on Magnetics.

[52]  A. Slavin,et al.  Theory of dipole-exchange spin wave spectrum for ferromagnetic films with mixed exchange boundary conditions , 1986 .

[53]  Iuliana Radu,et al.  Operating conditions and stability of spin torque majority gates: Analytical understanding and numerical evidence , 2017 .

[54]  Giovanni De Micheli,et al.  New Logic Synthesis as Nanotechnology Enabler , 2015, Proceedings of the IEEE.

[55]  J. E. Brewer,et al.  Extending the road beyond CMOS , 2002 .