Modelos de Simulacin de Reflectividad en ecologa: potencialidades y problemas
暂无分享,去创建一个
[1] A. Bombelli,et al. Differences in leaf traits among Mediterranean broad-leaved evergreen shrubs , 2001 .
[2] A. Nardini,et al. Are Sclerophylls and Malacophylls Hydraulically Different? , 2001, Biologia Plantarum.
[3] Emilio Chuvieco,et al. Generation of a Species-Specific Look-Up Table for Fuel Moisture Content Assessment , 2009, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.
[4] Martín F. Garbulsky,et al. Estimación de la eficiencia del uso de la radiación en bosques mediterráneos a partir de datos MODIS. Uso del Índice de Reflectancia Fotoquímica (PRI) , 2008 .
[5] J. Pausas,et al. Leaf traits and resprouting ability in the Mediterranean basin , 2006 .
[6] Frank Veroustraete,et al. Seasonal variations in leaf area index, leaf chlorophyll, and water content; scaling-up to estimate fAPAR and carbon balance in a multilayer, multispecies temperate forest. , 1999, Tree physiology.
[7] Alan H. Strahler,et al. On the nature of models in remote sensing , 1986 .
[8] Jiaguo Qi,et al. A Simple Physical Model of Vegetation Reflectance for Standardising Optical Satellite Imagery , 2001 .
[9] F. Rego,et al. Growth, water relations and photosynthesis of seedlings and resprouts after fire , 2005 .
[10] E. Salinero. Teledetección ambiental: la observación de la Tierra desde el espacio , 2002 .
[11] H. Mooney,et al. The Water Factor and Convergent Evolution in Mediterranean-type Vegetation , 1976 .
[12] J. Paruelo. La caracterización funcional de ecosistemas mediante sensores remotos , 2008 .
[13] D. Riaño,et al. Estimation of live fuel moisture content from MODIS images for fire risk assessment , 2008 .
[14] J. Tsialtas,et al. Leaf Physiological Traits and their Importance for Species Success in a Mediterranean Grassland , 2004, Photosynthetica.
[15] John S. Boyer,et al. Measuring the Water Status of Plants and Soils , 1995 .
[16] D. Riaño,et al. Estimation of fuel moisture content from multitemporal analysis of Landsat Thematic Mapper reflectance data: Applications in fire danger assessment , 2002 .
[17] L. Gratani. Response to microclimate of morphological leaf attributes, photosynthetic and water relations of evergreen sclerophyllous shrub species , 1994 .
[18] Yuri Knyazikhin,et al. Retrieval of canopy biophysical variables from bidirectional reflectance Using prior information to solve the ill-posed inverse problem , 2003 .
[19] N. Goel,et al. Needle chlorophyll content estimation through model inversion using hyperspectral data from boreal conifer forest canopies , 2004 .
[20] E. Salinero,et al. Comparación de modelos empíricos y de transferencia radiativa para estimar contenido de humedad en pastizales: poder de generalización , 2008 .
[21] Emilio Chuvieco,et al. Combining AVHRR and meteorological data for estimating live fuel moisture content , 2008 .
[22] J. Hill,et al. Use of coupled canopy structure dynamic and radiative transfer models to estimate biophysical canopy characteristics , 2005 .
[23] L. Gratani,et al. Long-time variations in leaf mass and area of Mediterranean evergreen broad-leaf and narrow-leaf maquis species , 2006, Photosynthetica.
[24] J. Escudero,et al. Adaptability of leaves of Cistus ladanifer to widely varying environmental conditions , 1996 .
[25] E. Chuvieco,et al. Estimating temporal dynamics of fuel moisture content of Mediterranean species from NOAA-AVHRR data , 1996 .
[26] B. E. Mahall,et al. Drought and changes in leaf orientation for two California chaparral shrubs: Ceanothus megacarpus and Ceanothus crassifolius , 1985, Oecologia.
[27] L. Gratani,et al. Leaf key traits of Erica arborea L., Erica multiflora L. and Rosmarinus officinalis L. co-occurring , 2004 .
[28] J. Flexas,et al. Water relations and stomatal characteristics of Mediterranean plants with different growth forms and leaf habits: responses to water stress and recovery , 2007, Plant and Soil.
[29] Filippo Bussotti,et al. Structural and functional traits of Quercus ilex in response to water availability , 2002 .
[30] R. Myneni,et al. Investigation of a model inversion technique to estimate canopy biophysical variables from spectral and directional reflectance data , 2000 .
[31] F. Baret,et al. PROSPECT: A model of leaf optical properties spectra , 1990 .
[32] T. Faurtyot. Vegetation water and dry matter contents estimated from top-of-the-atmosphere reflectance data: A simulation study , 1997 .
[33] Litterfall and nutrient flux in Cistus ladanifer L. shrubland in S.W. Spain , 1993 .
[34] E. Chuvieco,et al. Foliage moisture content estimation from one‐dimensional and two‐dimensional spectroradiometry for fire danger assessment , 2006 .
[35] C. Werner,et al. Two different strategies of Mediterranean macchia plants to avoid photoinhibitory damage by excessive radiation levels during summer drought , 1999 .
[36] F. J. Ahern,et al. A quantitative relationship between forest growth rates and Thematic Mapper reflectance measurements , 1991 .
[37] A. Kyparissis,et al. Seasonal fluctuations in photoprotective (xanthophyll cycle) and photoselective (chlorophylls) capacity in eight Mediterranean plant species belonging to two different growth forms , 2000 .
[38] Fernando Valladares,et al. Tradeoffs Between Irradiance Capture and Avoidance in Semi-arid Environments Assessed with a Crown Architecture Model , 1999 .
[39] F. Novo,et al. Seasonal Differences in Photochemical Efficiency and Chlorophyll and Carotenoid Contents in Six Mediterranean Shrub Species under Field Conditions , 2004, Photosynthetica.
[40] L. Gratani,et al. Adaptive photosynthetic strategies of the Mediterranean maquis species according to their origin , 2004, Photosynthetica.
[41] Jiaguo Qi,et al. Erratum to “A simple physical model of vegetation reflectance for standardising optical satellite imagery” [Remote Sens. Environ. 75(3) 350–359 , 2001 .
[42] M. A. Lo Gullo,et al. Different strategies of drought resistance in three Mediterranean sclerophyllous trees growing in the same environmental conditions. , 1988, The New phytologist.
[43] A. Bombelli,et al. Correlation between leaf age and other leaf traits in three Mediterranean maquis shrub species: Quercus ilex, Phillyrea latifolia and Cistus incanus , 2000 .
[44] W. Verhoef,et al. PROSPECT+SAIL models: A review of use for vegetation characterization , 2009 .
[45] S. Jacquemoud. Inversion of the PROSPECT + SAIL Canopy Reflectance Model from AVIRIS Equivalent Spectra: Theoretical Study , 1993 .
[46] A. Bombelli,et al. Leaf Anatomy, Inclination, and Gas Exchange Relationships in Evergreen Sclerophqldous and Drought Semideciduous Shrub Species , 2000, Photosynthetica.
[47] N. Goel. Models of vegetation canopy reflectance and their use in estimation of biophysical parameters from reflectance data , 1988 .
[48] D. Riaño,et al. Combining NDVI and surface temperature for the estimation of live fuel moisture content in forest fire danger rating , 2004 .