Modelos de Simulacin de Reflectividad en ecologa: potencialidades y problemas

A temperature stabilized optical mirror is disclosed. A rotatable mirror for switching optical light signals between optical fibers is mounted on a support structure. One or more PTC (Positional Temperature Coefficient) resistors are mounted to the support structure to provide heat to the combination support structure and mirror so as to maintain the mirror and support structure above a lower limit of a selected temperature range. The PTC resistor is selected to have a switching temperature substantially equal to the lower limit of the select temperature range.

[1]  A. Bombelli,et al.  Differences in leaf traits among Mediterranean broad-leaved evergreen shrubs , 2001 .

[2]  A. Nardini,et al.  Are Sclerophylls and Malacophylls Hydraulically Different? , 2001, Biologia Plantarum.

[3]  Emilio Chuvieco,et al.  Generation of a Species-Specific Look-Up Table for Fuel Moisture Content Assessment , 2009, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[4]  Martín F. Garbulsky,et al.  Estimación de la eficiencia del uso de la radiación en bosques mediterráneos a partir de datos MODIS. Uso del Índice de Reflectancia Fotoquímica (PRI) , 2008 .

[5]  J. Pausas,et al.  Leaf traits and resprouting ability in the Mediterranean basin , 2006 .

[6]  Frank Veroustraete,et al.  Seasonal variations in leaf area index, leaf chlorophyll, and water content; scaling-up to estimate fAPAR and carbon balance in a multilayer, multispecies temperate forest. , 1999, Tree physiology.

[7]  Alan H. Strahler,et al.  On the nature of models in remote sensing , 1986 .

[8]  Jiaguo Qi,et al.  A Simple Physical Model of Vegetation Reflectance for Standardising Optical Satellite Imagery , 2001 .

[9]  F. Rego,et al.  Growth, water relations and photosynthesis of seedlings and resprouts after fire , 2005 .

[10]  E. Salinero Teledetección ambiental: la observación de la Tierra desde el espacio , 2002 .

[11]  H. Mooney,et al.  The Water Factor and Convergent Evolution in Mediterranean-type Vegetation , 1976 .

[12]  J. Paruelo La caracterización funcional de ecosistemas mediante sensores remotos , 2008 .

[13]  D. Riaño,et al.  Estimation of live fuel moisture content from MODIS images for fire risk assessment , 2008 .

[14]  J. Tsialtas,et al.  Leaf Physiological Traits and their Importance for Species Success in a Mediterranean Grassland , 2004, Photosynthetica.

[15]  John S. Boyer,et al.  Measuring the Water Status of Plants and Soils , 1995 .

[16]  D. Riaño,et al.  Estimation of fuel moisture content from multitemporal analysis of Landsat Thematic Mapper reflectance data: Applications in fire danger assessment , 2002 .

[17]  L. Gratani Response to microclimate of morphological leaf attributes, photosynthetic and water relations of evergreen sclerophyllous shrub species , 1994 .

[18]  Yuri Knyazikhin,et al.  Retrieval of canopy biophysical variables from bidirectional reflectance Using prior information to solve the ill-posed inverse problem , 2003 .

[19]  N. Goel,et al.  Needle chlorophyll content estimation through model inversion using hyperspectral data from boreal conifer forest canopies , 2004 .

[20]  E. Salinero,et al.  Comparación de modelos empíricos y de transferencia radiativa para estimar contenido de humedad en pastizales: poder de generalización , 2008 .

[21]  Emilio Chuvieco,et al.  Combining AVHRR and meteorological data for estimating live fuel moisture content , 2008 .

[22]  J. Hill,et al.  Use of coupled canopy structure dynamic and radiative transfer models to estimate biophysical canopy characteristics , 2005 .

[23]  L. Gratani,et al.  Long-time variations in leaf mass and area of Mediterranean evergreen broad-leaf and narrow-leaf maquis species , 2006, Photosynthetica.

[24]  J. Escudero,et al.  Adaptability of leaves of Cistus ladanifer to widely varying environmental conditions , 1996 .

[25]  E. Chuvieco,et al.  Estimating temporal dynamics of fuel moisture content of Mediterranean species from NOAA-AVHRR data , 1996 .

[26]  B. E. Mahall,et al.  Drought and changes in leaf orientation for two California chaparral shrubs: Ceanothus megacarpus and Ceanothus crassifolius , 1985, Oecologia.

[27]  L. Gratani,et al.  Leaf key traits of Erica arborea L., Erica multiflora L. and Rosmarinus officinalis L. co-occurring , 2004 .

[28]  J. Flexas,et al.  Water relations and stomatal characteristics of Mediterranean plants with different growth forms and leaf habits: responses to water stress and recovery , 2007, Plant and Soil.

[29]  Filippo Bussotti,et al.  Structural and functional traits of Quercus ilex in response to water availability , 2002 .

[30]  R. Myneni,et al.  Investigation of a model inversion technique to estimate canopy biophysical variables from spectral and directional reflectance data , 2000 .

[31]  F. Baret,et al.  PROSPECT: A model of leaf optical properties spectra , 1990 .

[32]  T. Faurtyot Vegetation water and dry matter contents estimated from top-of-the-atmosphere reflectance data: A simulation study , 1997 .

[33]  Litterfall and nutrient flux in Cistus ladanifer L. shrubland in S.W. Spain , 1993 .

[34]  E. Chuvieco,et al.  Foliage moisture content estimation from one‐dimensional and two‐dimensional spectroradiometry for fire danger assessment , 2006 .

[35]  C. Werner,et al.  Two different strategies of Mediterranean macchia plants to avoid photoinhibitory damage by excessive radiation levels during summer drought , 1999 .

[36]  F. J. Ahern,et al.  A quantitative relationship between forest growth rates and Thematic Mapper reflectance measurements , 1991 .

[37]  A. Kyparissis,et al.  Seasonal fluctuations in photoprotective (xanthophyll cycle) and photoselective (chlorophylls) capacity in eight Mediterranean plant species belonging to two different growth forms , 2000 .

[38]  Fernando Valladares,et al.  Tradeoffs Between Irradiance Capture and Avoidance in Semi-arid Environments Assessed with a Crown Architecture Model , 1999 .

[39]  F. Novo,et al.  Seasonal Differences in Photochemical Efficiency and Chlorophyll and Carotenoid Contents in Six Mediterranean Shrub Species under Field Conditions , 2004, Photosynthetica.

[40]  L. Gratani,et al.  Adaptive photosynthetic strategies of the Mediterranean maquis species according to their origin , 2004, Photosynthetica.

[41]  Jiaguo Qi,et al.  Erratum to “A simple physical model of vegetation reflectance for standardising optical satellite imagery” [Remote Sens. Environ. 75(3) 350–359 , 2001 .

[42]  M. A. Lo Gullo,et al.  Different strategies of drought resistance in three Mediterranean sclerophyllous trees growing in the same environmental conditions. , 1988, The New phytologist.

[43]  A. Bombelli,et al.  Correlation between leaf age and other leaf traits in three Mediterranean maquis shrub species: Quercus ilex, Phillyrea latifolia and Cistus incanus , 2000 .

[44]  W. Verhoef,et al.  PROSPECT+SAIL models: A review of use for vegetation characterization , 2009 .

[45]  S. Jacquemoud Inversion of the PROSPECT + SAIL Canopy Reflectance Model from AVIRIS Equivalent Spectra: Theoretical Study , 1993 .

[46]  A. Bombelli,et al.  Leaf Anatomy, Inclination, and Gas Exchange Relationships in Evergreen Sclerophqldous and Drought Semideciduous Shrub Species , 2000, Photosynthetica.

[47]  N. Goel Models of vegetation canopy reflectance and their use in estimation of biophysical parameters from reflectance data , 1988 .

[48]  D. Riaño,et al.  Combining NDVI and surface temperature for the estimation of live fuel moisture content in forest fire danger rating , 2004 .