Labelled and unlabelled enumeration of k-gonal 2-trees

In this paper, we generalize 2-trees by replacing triangles by quadrilaterals, pentagons or k-sided polygons (k-gons), where k ≥ 3 is given. This generalization, to k-gonal 2-trees, is natural and is closely related, in the planar case, to some specializations of the cell-growth problem. Our goal is the labelled and unlabelled enumeration of k-gonal 2-trees according to the number n of k-gons. We give explicit formulas in the labelled case, and, in the unlabelled case, recursive and asymptotic formulas.

[1]  R. Otter The Number of Trees , 1948 .

[2]  Gilbert Labelle,et al.  Enumeration of m-Ary Cacti , 1998, Adv. Appl. Math..

[3]  N. Sloane,et al.  Proof Techniques in Graph Theory , 1970 .

[4]  Gilbert Labelle,et al.  Some new computational methods in the theory of species , 1986 .

[5]  Neil J. A. Sloane,et al.  The encyclopedia of integer sequences , 1995 .

[6]  Gilbert Labelle,et al.  Enumeration of (uni- or bicolored) plane trees according to their degree distribution , 1996, Discret. Math..

[7]  R. Read,et al.  On the Number of Plane 2‐Trees , 1973 .

[8]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[9]  Gilbert Labelle,et al.  A classification of plane and planar 2-trees , 2003, Theor. Comput. Sci..

[10]  Gilbert Labelle,et al.  Specifying 2-trees , 2000 .

[11]  Gilbert Labelle,et al.  Combinatorial species and tree-like structures , 1997, Encyclopedia of mathematics and its applications.

[12]  Gilbert Labelle,et al.  Enumération des 2-arbres k-gonaux , 2002 .

[13]  Edgar M. Palmer On the number of labeled 2-trees , 1969 .

[14]  Frank Harary,et al.  On the cell-growth problem for arbitrary polygons , 1975, Discret. Math..

[15]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[16]  A. Joyal Une théorie combinatoire des séries formelles , 1981 .

[17]  E. Bender Asymptotic Methods in Enumeration , 1974 .

[18]  Gilbert Labelle,et al.  The Specification of 2-trees , 2002, Adv. Appl. Math..