Stereochemistry and thermal stability of tartaric acid on the intrinsically chiral Cu{531} surface

[1]  G. Held,et al.  Surface chemistry of alanine on Cu{111}: Adsorption geometry and temperature dependence , 2014 .

[2]  W. Tysoe,et al.  Structure and decomposition pathways of D-(−)-tartaric acid on Pd(111) , 2014 .

[3]  J. Shumaker-Parry,et al.  Structural study of citrate layers on gold nanoparticles: role of intermolecular interactions in stabilizing nanoparticles. , 2014, Journal of the American Chemical Society.

[4]  Xu Feng,et al.  Superenantioselective chiral surface explosions. , 2013, Journal of the American Chemical Society.

[5]  D. P. Woodruff,et al.  Quantitative local structure determination of R,R-tartaric acid on Cu(110) : Monotartrate and bitartrate phases , 2012 .

[6]  G. Held,et al.  The importance of attractive three-point interaction in enantioselective surface chemistry: stereospecific adsorption of serine on the intrinsically chiral Cu{531} surface. , 2012, Journal of the American Chemical Society.

[7]  G. Held,et al.  Complete Experimental Structure Determination of the p(3 × 2)pg Phase of Glycine on Cu{110} , 2012 .

[8]  D. King,et al.  Chirality in Amino Acid Overlayers on Cu Surfaces , 2011 .

[9]  Zhi Liu,et al.  A step toward the wet surface chemistry of glycine and alanine on Cu{110}: destabilization and decomposition in the presence of near-ambient water vapor. , 2011, Journal of the American Chemical Society.

[10]  G. Held,et al.  The adsorption geometry and chemical state of lysine on Cu{110} , 2011 .

[11]  G. Held,et al.  Global and local expression of chirality in serine on the Cu{110} surface. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[12]  V. Dhanak,et al.  Hydrogen bond-induced pair formation of glycine on the chiral Cu{531} surface. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[13]  D. King,et al.  Atomic Roughness of an Intrinsically Chiral Surface Orientation of an fcc Metal: Cu{531} , 2010 .

[14]  A. Gellman Chiral surfaces: accomplishments and challenges. , 2010, ACS nano.

[15]  M. J. Gladys,et al.  The adsorption and stability of sulfur containing amino acids on Cu{5 3 1} , 2009 .

[16]  M. J. Gladys,et al.  Surface geometry of Cu{531} , 2009 .

[17]  A. Vallée,et al.  Adsorption of a tripeptide, GSH, on Au(111) under UHV conditions; PM-RAIRS and low T-XPS characterisation , 2008 .

[18]  M. J. Gladys,et al.  The Chemistry of Intrinsically Chiral Surfaces , 2008 .

[19]  M. J. Gladys,et al.  Synergetic Effects of the Cu/Pt{110} Surface Alloy : Enhanced Reactivity of Water and Carbon Monoxide , 2008 .

[20]  M. J. Gladys,et al.  Enantiospecific Adsorption of Alanine on the Chiral Cu{531} Surface , 2007 .

[21]  D. P. Woodruff Adsorbate structure determination using photoelectron diffraction: Methods and applications , 2007 .

[22]  L. B. Jones,et al.  The local adsorption geometry and electronic structure of alanine on Cu{110} , 2006 .

[23]  D. King,et al.  The Structure of the Chiral Pt{531} Surface: A Combined LEED and DFT Study , 2005 .

[24]  S. M. Barlow,et al.  Polymorphism in supramolecular chiral structures of R- and S-alanine on Cu(1 1 0) , 2005 .

[25]  K. Ernst,et al.  Homochirality in monolayers of achiral meso tartaric acid , 2005 .

[26]  V. Humblot,et al.  (R,R)-Tartaric acid on Ni(110): the dynamic nature of chiral adsorption motifs , 2004 .

[27]  S. M. Barlow,et al.  Two-dimensional organisational chirality through supramolecular assembly of molecules at metal surfaces , 2004 .

[28]  R. Fasel,et al.  Chiral recognition in surface explosion. , 2004, Journal of the American Chemical Society.

[29]  T. Jones,et al.  An investigation of the adsorption of (R,R)-tartaric acid on oxidised Ni{111} surfaces , 2004 .

[30]  V. Humblot,et al.  Local and Global Chirality at Surfaces: Succinic Acid versus Tartaric Acid on Cu(110) , 2004 .

[31]  K. Wilson,et al.  Fundamental Investigations of Enantioselective Heterogeneous Catalysis , 2003 .

[32]  S. M. Barlow,et al.  Complex organic molecules at metal surfaces: bonding, organisation and chirality , 2003 .

[33]  T. Jones,et al.  Direct STM evidence of a surface interaction between chiral modifier and pro-chiral reagent: Methylacetoacetate on R,R-tartaric acid modified Ni{111} , 2002 .

[34]  H. Steinrück,et al.  Temperature dependent oxidation of thin Ni layers on Cu(111) , 2002 .

[35]  T. Jones,et al.  A RAIRS, STM and TPD study of the Ni{111}/R,R-tartaric acid system: Modelling the chiral modification of Ni nanoparticles , 2002 .

[36]  D. Sholl,et al.  Atomically Detailed Models of the Effect of Thermal Roughening on the Enantiospecificity of Naturally Chiral Platinum Surfaces , 2002 .

[37]  Rasmita Raval,et al.  From local adsorption stresses to chiral surfaces: (R,R)-tartaric acid on Ni(110). , 2002, Journal of the American Chemical Society.

[38]  V. Humblot,et al.  Chemical Transformations, Molecular Transport, and Kinetic Barriers in Creating the Chiral Phase of (R, R)-Tartaric Acid on Cu(110) , 2002 .

[39]  P. Sautet,et al.  Stability of chiral domains produced by adsorption of tartaric acid isomers on the Cu(110) surface: a periodic density functional theory study. , 2001, Journal of the American Chemical Society.

[40]  G. Attard Electrochemical Studies of Enantioselectivity at Chiral Metal Surfaces , 2001 .

[41]  A. Baiker Transition state analogues — a guide for the rational design of enantioselective heterogeneous hydrogenation catalysts , 2000 .

[42]  X. Zhao Fabricating Homochiral Facets on Cu(001) with l-lysine , 2000 .

[43]  D. Sholl,et al.  Thermal Fluctuations in the Structure of Naturally Chiral Pt surfaces , 2000 .

[44]  R. Raval,et al.  Extended surface chirality from supramolecular assemblies of adsorbed chiral molecules , 2000, Nature.

[45]  W. Yang,et al.  Adsorption of alanine on Cu(001) studied by scanning tunneling microscopy , 1999 .

[46]  R. Raval,et al.  Creating Chiral Surfaces for Enantioselective Heterogeneous Catalysis: R,R-Tartaric Acid on Cu(110) , 1999 .

[47]  J. Feliu,et al.  Surface Reactivity at “Chiral” Platinum Surfaces , 1999 .

[48]  J. Stöhr,et al.  The adsorption structure of glycine adsorbed on Cu(110); comparison with formate and acetate/Cu(110) , 1998 .

[49]  A. Baiker Progress in asymmetric heterogeneous catalysis: Design of novel chirally modified platinum metal catalysts , 1997 .

[50]  M. Keane Interaction of Optically Active Tartaric Acid with a Nickel−Silica Catalyst: Role of Both the Modification and Reaction Media in Determining Enantioselectivity , 1997 .

[51]  M. Keane Adsorption of optically pure alanine on silica-supported nickel and the consequent catalytic enantioselectivity , 1994 .

[52]  H. Blaser Enantioselective synthesis using chiral heterogeneous catalysts. , 1991 .