Minimax Estimation of Discrete Distributions Under $\ell _{1}$ Loss
暂无分享,去创建一个
[1] J. F. Daly. A Problem in Estimation , 1941 .
[2] E. L. Lehmann,et al. Theory of point estimation , 1950 .
[3] Abraham Wald,et al. Statistical Decision Functions , 1951 .
[4] C. Stein. Inadmissibility of the Usual Estimator for the Mean of a Multivariate Normal Distribution , 1956 .
[5] S. Trybuła. Some Problems of Simultaneous Minimax Estimation , 1958 .
[6] W. Hoeffding. Probability Inequalities for sums of Bounded Random Variables , 1963 .
[7] J. Hájek. Local asymptotic minimax and admissibility in estimation , 1972 .
[8] M. Rutkowska. Minimax estimation of the parameters of the multivariate hypergeometric and multinomial distributions , 1977 .
[9] I. Olkin,et al. Admissible and Minimax Estimation for the Multinomial Distribution and for K Independent Binomial Distributions , 1979 .
[10] Luc Devroye,et al. Nonparametric Density Estimation , 1985 .
[11] L. Devroye,et al. Nonparametric density estimation : the L[1] view , 1987 .
[12] T. Cover,et al. A sandwich proof of the Shannon-McMillan-Breiman theorem , 1988 .
[13] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[14] P. Diaconis,et al. Closed Form Summation for Classical Distributions: Variations on Theme of De Moivre , 1991 .
[15] K. Marton,et al. Entropy and the Consistent Estimation of Joint Distributions , 1993, Proceedings. IEEE International Symposium on Information Theory.
[16] I. Johnstone,et al. Ideal spatial adaptation by wavelet shrinkage , 1994 .
[17] N. Fisher,et al. Probability Inequalities for Sums of Bounded Random Variables , 1994 .
[18] I. Johnstone,et al. Minimax risk overlp-balls forlp-error , 1994 .
[19] I. Johnstone,et al. Minimax Risk over l p-Balls for l q-error , 1994 .
[20] A. Antos,et al. Convergence properties of functional estimates for discrete distributions , 2001 .
[21] Liam Paninski,et al. Estimation of Entropy and Mutual Information , 2003, Neural Computation.
[22] J. Neyman,et al. INADMISSIBILITY OF THE USUAL ESTIMATOR FOR THE MEAN OF A MULTIVARIATE NORMAL DISTRIBUTION , 2005 .
[23] Eli Upfal,et al. Probability and Computing: Randomized Algorithms and Probabilistic Analysis , 2005 .
[24] Inderjit S. Dhillon,et al. Clustering with Bregman Divergences , 2005, J. Mach. Learn. Res..
[25] Sang Joon Kim,et al. A Mathematical Theory of Communication , 2006 .
[26] J. Adell,et al. Exact Kolmogorov and total variation distances between some familiar discrete distributions , 2006 .
[27] Harald Niederreiter,et al. Probability and computing: randomized algorithms and probabilistic analysis , 2006, Math. Comput..
[28] Imre Csiszár,et al. Information Theory - Coding Theorems for Discrete Memoryless Systems, Second Edition , 2011 .
[29] Gregory Valiant,et al. The Power of Linear Estimators , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.
[30] Gregory Valiant,et al. Estimating the unseen: an n/log(n)-sample estimator for entropy and support size, shown optimal via new CLTs , 2011, STOC '11.
[31] T. Cai,et al. Minimax and Adaptive Inference in Nonparametric Function Estimation , 2012, 1203.4911.
[32] Jorge F. Silva,et al. Shannon entropy convergence results in the countable infinite case , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.
[33] D. Berend,et al. A sharp estimate of the binomial mean absolute deviation with applications , 2013 .
[34] Rocco A. Servedio,et al. Learning k-Modal Distributions via Testing , 2012, Theory Comput..
[35] Rocco A. Servedio,et al. Explorer Efficient Density Estimation via Piecewise Polynomial Approximation , 2013 .
[36] Yanjun Han,et al. Beyond Maximum Likelihood: from Theory to Practice , 2014, ArXiv.
[37] T. Weissman,et al. Non-asymptotic Theory for the Plug-in Rule in Functional Estimation , 2014 .
[38] Yanjun Han,et al. Minimax Estimation of Functionals of Discrete Distributions , 2014, IEEE Transactions on Information Theory.
[39] Alon Orlitsky,et al. On Learning Distributions from their Samples , 2015, COLT.
[40] Yihong Wu,et al. Minimax Rates of Entropy Estimation on Large Alphabets via Best Polynomial Approximation , 2014, IEEE Transactions on Information Theory.
[41] Yanjun Han,et al. Maximum Likelihood Estimation of Functionals of Discrete Distributions , 2014, IEEE Transactions on Information Theory.
[42] D. Donoho,et al. Minimax risk over / p-balls for / q-error , 2022 .