The Number of Singular Vector Tuples and Uniqueness of Best Rank-One Approximation of Tensors

In this paper we discuss the notion of singular vector tuples of a complex-valued $$d$$d-mode tensor of dimension $$m_1\times \cdots \times m_d$$m1×⋯×md. We show that a generic tensor has a finite number of singular vector tuples, viewed as points in the corresponding Segre product. We give the formula for the number of singular vector tuples. We show similar results for tensors with partial symmetry. We give analogous results for the homogeneous pencil eigenvalue problem for cubic tensors, i.e., $$m_1=\cdots =m_d$$m1=⋯=md. We show the uniqueness of best approximations for almost all real tensors in the following cases: rank-one approximation; rank-one approximation for partially symmetric tensors (this approximation is also partially symmetric); rank-$$(r_1,\ldots ,r_d)$$(r1,…,rd) approximation for $$d$$d-mode tensors.

[1]  Christopher J. Hillar,et al.  Most Tensor Problems Are NP-Hard , 2009, JACM.

[2]  S. Banach Über homogene Polynome in ($L^{2}$) , 1938 .

[3]  L. Qi Eigenvalues and invariants of tensors , 2007 .

[4]  Luke Oeding,et al.  Eigenvectors of tensors and algorithms for Waring decomposition , 2011, J. Symb. Comput..

[5]  Lek-Heng Lim,et al.  Singular values and eigenvalues of tensors: a variational approach , 2005, 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005..

[6]  Johan P. Hansen,et al.  INTERSECTION THEORY , 2011 .

[7]  Joe W. Harris,et al.  Principles of Algebraic Geometry , 1978 .

[8]  Shuzhong Zhang,et al.  Maximum Block Improvement and Polynomial Optimization , 2012, SIAM J. Optim..

[9]  Joos Vandewalle,et al.  On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..

[10]  Liqun Qi,et al.  Eigenvalues of a real supersymmetric tensor , 2005, J. Symb. Comput..

[11]  César Massri,et al.  An algorithm to find a maximum of a multilinear map over a product of spheres , 2011, J. Approx. Theory.

[12]  Wendell H. Fleming,et al.  Differential geometry of complex vector bundles , 1987 .

[13]  Chen Ling,et al.  The Best Rank-1 Approximation of a Symmetric Tensor and Related Spherical Optimization Problems , 2012, SIAM J. Matrix Anal. Appl..

[14]  I. M. Gelʹfand,et al.  Discriminants, Resultants, and Multidimensional Determinants , 1994 .

[15]  L. Qi,et al.  The degree of the E-characteristic polynomial of an even order tensor , 2007 .

[16]  Friedrich Hirzebruch Topological methods in algebraic geometry , 1966 .

[17]  S. Friedland Best rank one approximation of real symmetric tensors can be chosen symmetric , 2011, 1110.5689.

[18]  B. Sturmfels,et al.  The number of eigenvalues of a tensor , 2010, 1004.4953.

[19]  Shiing-Shen Chern,et al.  Characteristic Classes of Hermitian Manifolds , 1946 .

[20]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[21]  Enrico Carlini,et al.  Ranks derived from multilinear maps , 2011 .