Central gating of fly optomotor response

We study the integration of multisensory and central input at the level of an identified fly motoneuron, the ventral cervical nerve motoneuron (VCNM) cell, which controls head movements of the animal. We show that this neuron receives input from a central neuron signaling flight activity, from two identified wide-field motion-sensitive neurons, from the wind-sensitive Johnston organ on the antennae, and from the campaniform sensillae of the halteres. We find that visual motion alone leads to only subthreshold responses. Only when it is combined with flight activity or wind stimuli does the VCNM respond to visual motion by modulating its spike activity in a directionally selective way. This nonlinear enhancement of visual responsiveness in the VCNM by central activity is reflected at the behavioral level, when compensatory head movements are measured in response to visual motion. While head movements of flies have only a small amplitude when flies are at rest, the response amplitude is increased by a factor of 30–40 during flight.

[1]  M. Dickinson,et al.  Active flight increases the gain of visual motion processing in Drosophila , 2010, Nature Neuroscience.

[2]  M. Stryker,et al.  Modulation of Visual Responses by Behavioral State in Mouse Visual Cortex , 2010, Neuron.

[3]  Michael Brecht,et al.  Impact of Spikelets on Hippocampal CA1 Pyramidal Cell Activity During Spatial Exploration , 2010, Science.

[4]  M Egelhaaf,et al.  Behavioural state affects motion-sensitive neurones in the fly visual system , 2010, Journal of Experimental Biology.

[5]  Holger G Krapp,et al.  Nonlinear Integration of Visual and Haltere Inputs in Fly Neck Motor Neurons , 2009, The Journal of Neuroscience.

[6]  D. Tank,et al.  Intracellular dynamics of hippocampal place cells during virtual navigation , 2009, Nature.

[7]  Bruno van Swinderen,et al.  Shared Visual Attention and Memory Systems in the Drosophila Brain , 2009, PloS one.

[8]  M. Egelhaaf,et al.  Variability of blowfly head optomotor responses , 2009, Journal of Experimental Biology.

[9]  T. Daniel,et al.  A neural basis for gyroscopic force measurement in the halteres of Holorusia , 2008, Journal of Comparative Physiology A.

[10]  H. Krapp,et al.  Visuomotor Transformation in the Fly Gaze Stabilization System , 2008, PLoS biology.

[11]  F. Haiss,et al.  Spatiotemporal Dynamics of Cortical Sensorimotor Integration in Behaving Mice , 2007, Neuron.

[12]  Michael B. Reiser,et al.  The role of visual and mechanosensory cues in structuring forward flight in Drosophila melanogaster , 2007, Journal of Experimental Biology.

[13]  Harvey A Swadlow,et al.  Brain state and contrast sensitivity in the awake visual thalamus , 2006, Nature Neuroscience.

[14]  Michael H Dickinson,et al.  Role of calcium in the regulation of mechanical power in insect flight. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Antonia Marin-Burgin,et al.  A dye mixture (Neurobiotin and Alexa 488) reveals extensive dye-coupling among neurons in leeches; physiology confirms the connections , 2005, Journal of Comparative Physiology A.

[16]  Yutaka Kirino,et al.  State-Dependent Sensory Gating in Olfactory Cortex , 2005, Neuron.

[17]  Alexander Borst,et al.  Dye-coupling visualizes networks of large-field motion-sensitive neurons in the fly , 2005, Journal of Comparative Physiology A.

[18]  J. H. van Hateren,et al.  Saccadic head and thorax movements in freely walking blowflies , 2004, Journal of Comparative Physiology A.

[19]  J. Reynolds,et al.  Attentional modulation of visual processing. , 2004, Annual review of neuroscience.

[20]  A. Borst,et al.  Neural mechanism underlying complex receptive field properties of motion-sensitive interneurons , 2004, Nature Neuroscience.

[21]  Alexander Borst,et al.  The Intrinsic Electrophysiological Characteristics of Fly Lobula Plate Tangential Cells: III. Visual Response Properties , 1999, Journal of Computational Neuroscience.

[22]  Alexander Borst,et al.  The intrinsic electrophysiological characteristics of fly lobula plate tangential cells: I. Passive membrane properties , 1996, Journal of Computational Neuroscience.

[23]  R. Hengstenberg,et al.  The halteres of the blowfly Calliphora , 1994, Journal of Comparative Physiology A.

[24]  G. Nalbach The halteres of the blowfly Calliphora , 1993, Journal of Comparative Physiology A.

[25]  U. Grünert,et al.  Campaniform sensilla of Calliphora vicina (Insecta, Diptera) , 1987, Zoomorphology.

[26]  N. Strausfeld,et al.  The organization of giant horizontal-motion-sensitive neurons and their synaptic relationships in the lateral deutocerebrum of Calliphora erythrocephala and Musca domestica , 1985, Cell and Tissue Research.

[27]  N. J. Strausfeld,et al.  Convergence of visual, haltere, and prosternai inputs at neck motor neurons of Calliphora erythrocephala , 1985, Cell and Tissue Research.

[28]  K. Hausen Motion sensitive interneurons in the optomotor system of the fly , 1982, Biological Cybernetics.

[29]  Peter Schlegel Die Leistungen eines Gelenkrezeptors der Antenne von Calliphora für die Perzeption von Luftströmungen. Elektrophysiologische Untersuchungen , 1970, Zeitschrift für vergleichende Physiologie.

[30]  N. J. Strausfeld,et al.  The neck motor system of the flyCalliphora erythrocephala , 2004, Journal of Comparative Physiology A.

[31]  A. Borst,et al.  Input Organization of Multifunctional Motion-Sensitive Neurons in the Blowfly , 2003, The Journal of Neuroscience.

[32]  Ralph J Greenspan,et al.  Salience modulates 20–30 Hz brain activity in Drosophila , 2003, Nature Neuroscience.

[33]  J. Maunsell,et al.  The role of attention in visual processing. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[34]  M. Göpfert,et al.  The mechanical basis of Drosophila audition. , 2002, The Journal of experimental biology.

[35]  A. Borst,et al.  Dendro-Dendritic Interactions between Motion-Sensitive Large-Field Neurons in the Fly , 2002, The Journal of Neuroscience.

[36]  A Borst,et al.  Recurrent Network Interactions Underlying Flow-Field Selectivity of Visual Interneurons , 2001, The Journal of Neuroscience.

[37]  J. Ostwald,et al.  Anesthesia changes frequency tuning of neurons in the rat primary auditory cortex. , 2001, Journal of neurophysiology.

[38]  R. Josephson,et al.  Asynchronous muscle: a primer. , 2000, The Journal of experimental biology.

[39]  M H Dickinson,et al.  Convergent mechanosensory input structures the firing phase of a steering motor neuron in the blowfly, Calliphora. , 1999, Journal of neurophysiology.

[40]  Hateren,et al.  Blowfly flight and optic flow. II. Head movements during flight , 1999, The Journal of experimental biology.

[41]  F. Ebner,et al.  Modulation of receptive field properties of thalamic somatosensory neurons by the depth of anesthesia. , 1999, Journal of neurophysiology.

[42]  Nicolas J. Kerscher,et al.  State-dependent receptive-field restructuring in the visual cortex , 1998, Nature.

[43]  C. Schilstra,et al.  Stabilizing gaze in flying blowflies , 1998, Nature.

[44]  Gilbert,et al.  Resistance reflex that maintains upright head posture in the flesh fly neobellieria bullata (Sarcophagidae) , 1998, The Journal of experimental biology.

[45]  M. Dickinson,et al.  Haltere Afferents Provide Direct, Electrotonic Input to a Steering Motor Neuron in the Blowfly, Calliphora , 1996, The Journal of Neuroscience.

[46]  C. Gilbert,et al.  Oculomotor control in calliphorid flies: Head movements during activation and inhibition of neck motor neurons corroborate neuroanatomical predictions , 1995, The Journal of comparative neurology.

[47]  Roland Hengstenberg,et al.  Gaze control in the blowfly Calliphora: a multisensory, two-stage integration process , 1991 .

[48]  Nicholas J. Strausfeld,et al.  The neck motor system of the fly Calliphora erythrocephala. II: Sensory organization , 1987 .

[49]  N. Strausfeld,et al.  The neck motor system of the fly Calliphora erythrocephala. I: Muscles and motor neurons , 1987 .

[50]  Walter Kaiser,et al.  Neuronal correlates of sleep, wakefulness and arousal in a diurnal insect , 1983, Nature.

[51]  D. Hubel,et al.  Effects of sleep and arousal on the processing of visual information in the cat , 1981, Nature.

[52]  H. Markl,et al.  Head Movements in Flies ( Calliphora ) Produced by Deflexion of the Halteres , 1980 .

[53]  P. Miller Haltere activity in a flightless hippoboscid fly, Crataerina pallida , 1977 .

[54]  Roland Hengstenberg Eye Movements in the housefly, Musca domestica , 1972 .

[55]  J. Pringle The gyroscopic mechanism of the halteres of Diptera , 1948, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[56]  A. G. Greenhill Kinematics and Dynamics , 1888, Nature.