Anti-Chaos control of a servo system using nonlinear model reference adaptive control

Abstract This work presents a method for anti-chaos control of a servo system affected by parametric uncertainty and constant disturbances. It is based on Nonlinear Model Reference Adaptive Control where the reference model corresponds to a chaotic Duffing oscillator. Only upper and lower bounds on the servo system input gain are assumed known beforehand. It is shown that the solutions of the closed-loop system are Uniformly Ultimately Bounded. Moreover, the chaotic behaviour of the servo system position is verified through the Largest Lyapunov Exponent. The proposed control methodology is tested through experiments.

[1]  Javier Moreno-Valenzuela Adaptive anti control of chaos for robot manipulators with experimental evaluations , 2013, Commun. Nonlinear Sci. Numer. Simul..

[2]  Lennart Ljung,et al.  System identification (2nd ed.): theory for the user , 1999 .

[3]  D. R. Coughanowr,et al.  Process systems analysis and control , 1965 .

[4]  Kirsten Morris,et al.  Friction and the Inverted Pendulum Stabilization Problem , 2008 .

[5]  Steven H. Strogatz,et al.  Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering , 1994 .

[6]  Manuel A. Duarte-Mermoud,et al.  Chaotification of unknown linear and nonlinear systems with applications , 2007 .

[7]  Bidyadhar Subudhi,et al.  Chaotic Path Planning for a Two-Link Flexible Robot Manipulator Using a Composite Control Technique , 2019 .

[8]  Chi-Tsong Chen,et al.  Linear System Theory and Design , 1995 .

[9]  J. Ottino The Kinematics of Mixing: Stretching, Chaos, and Transport , 1989 .

[10]  P. Tabeling,et al.  A dielectrophoretic chaotic mixer , 2002, Technical Digest. MEMS 2002 IEEE International Conference. Fifteenth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.02CH37266).

[11]  Ryu Katayama,et al.  Chaos simulator as a developing tool and a research environment for applications of chaos engineering , 1996 .

[12]  Petros A. Ioannou,et al.  Robust Adaptive Control , 2012 .

[13]  Alexander L. Fradkov,et al.  On self-synchronization and controlled synchronization , 1997 .

[14]  I. Mezić,et al.  Chaotic Mixer for Microchannels , 2002, Science.

[15]  S. Kondo,et al.  Non-linear technologies in a dishwasher , 1995, Proceedings of 1995 IEEE International Conference on Fuzzy Systems..

[16]  Edward Ott,et al.  Controlling chaos , 2006, Scholarpedia.

[17]  Yalcin Isler,et al.  Spatiotemporal chaotification of delta robot mixer for homogeneous graphene nanocomposite dispersing , 2020, Robotics Auton. Syst..

[18]  Xinghuo Yu,et al.  Chaos control : theory and applications , 2003 .

[19]  H. Khalil Adaptive output feedback control of nonlinear systems represented by input-output models , 1996, IEEE Trans. Autom. Control..

[20]  Guanrong Chen,et al.  Bifurcations and chaos in a permanent-magnet synchronous motor , 2002 .

[21]  Yundong Wang,et al.  Solid-liquid mixing performance in a stirred tank with a double punched rigid-flexible impeller coupled with a chaotic motor , 2017 .

[22]  Alexander L. Fradkov,et al.  Control of Chaos: Methods and Applications. II. Applications , 2004 .

[23]  Jon Juel Thomsen,et al.  Vibrations and Stability , 2021 .

[24]  Naresh K. Sinha,et al.  Modern Control Systems , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[25]  N. Kasagi,et al.  A chaotic mixer for magnetic bead-based micro cell sorter , 2004, Journal of Microelectromechanical Systems.

[26]  Neelima Gupte,et al.  Control methods for problems of mixing and coherence in chaotic maps and flows , 1997 .

[27]  Robin J. Evans,et al.  Control of chaos: Methods and applications in engineering, , 2005, Annu. Rev. Control..

[28]  K. S. Narenda,et al.  Adaptive and learning systems: Theory and applications , 2013, Autom..

[29]  Hsien-Keng Chen,et al.  Chaotic dynamics of the fractionally damped Duffing equation , 2007 .

[30]  Julien Clinton Sprott,et al.  Some simple chaotic jerk functions , 1997 .

[31]  S. Sastry,et al.  Adaptive Control: Stability, Convergence and Robustness , 1989 .

[32]  Leon O. Chua,et al.  Practical Numerical Algorithms for Chaotic Systems , 1989 .

[33]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[34]  José Boaventura-Cunha,et al.  Chaos-based grey wolf optimizer for higher order sliding mode position control of a robotic manipulator , 2017 .

[35]  W. Guan,et al.  Stability analysis and design of integrating unstable delay processes using the mirror-mapping technique , 2014 .

[36]  Naser Mostaghel,et al.  REPRESENTATIONS OF COULOMB FRICTION FOR DYNAMIC ANALYSIS , 1997 .

[37]  S. Boccaletti,et al.  Synchronization of chaotic systems , 2001 .

[38]  Dong-Wook Oh,et al.  A microfluidic chaotic mixer using ferrofluid , 2007 .

[39]  J. B. Chabi Orou,et al.  HARMONIC OSCILLATIONS, STABILITY AND CHAOS CONTROL IN A NON-LINEAR ELECTROMECHANICAL SYSTEM , 2003 .

[40]  K. T. Chau,et al.  Anti-control of chaos of a permanent magnet DC motor system for vibratory compactors , 2008 .

[41]  K. T. Chau,et al.  Experimental stabilization of chaos in a voltage-mode DC drive system , 2000 .

[42]  Zheng-Ming Ge,et al.  Chaos synchronization and parameters identification of single time scale brushless DC motors , 2004 .

[43]  Carlos Canudas de Wit,et al.  Friction Models and Friction Compensation , 1998, Eur. J. Control.

[44]  Ruben Garrido,et al.  An Algebraic Recursive Method for Parameter Identification of a Servo Model , 2013, IEEE/ASME Transactions on Mechatronics.

[45]  Carlos Canudas de Wit,et al.  A survey of models, analysis tools and compensation methods for the control of machines with friction , 1994, Autom..

[46]  W. C. Schultz,et al.  Control system performance measures: Past, present, and future , 1961 .

[47]  Francis J. Doyle,et al.  Friction compensation for a process control valve , 2000 .

[48]  Brian Armstrong-Hélouvry,et al.  Control of machines with friction , 1991, The Kluwer international series in engineering and computer science.

[49]  Ramon Vilanova,et al.  Model-reference robust tuning of 2DoF PI controllers for first- and second-order plus dead-time controlled processes , 2012 .

[50]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[51]  Peter Múčka,et al.  On dry friction modelling and simulation in kinematically excited oscillatory systems , 2008 .

[52]  Paknosh Karimaghaee,et al.  Observer-based model reference adaptive control for unknown time-delay chaotic systems with input nonlinearity , 2012 .

[53]  Javier Moreno-Valenzuela,et al.  Adaptive chaotification of robot manipulators via neural networks with experimental evaluations , 2016, Neurocomputing.

[54]  P. Tabeling,et al.  Chaotic mixing in electrokinetically and pressure driven micro flows , 2001, Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090).

[55]  Irene M. Gregory,et al.  Experimental Validation of L1 Adaptive Control: The Rohrs Counterexample in Flight , 2011 .

[56]  Chyun-Chau Fuh,et al.  Adaptive parameter identification of servo control systems with noise and high-frequency uncertainties , 2007 .

[57]  Ruben Garrido,et al.  DC servomechanism parameter identification: a Closed Loop Input Error approach. , 2012, ISA transactions.

[58]  K.T. Chau,et al.  Application of chaotic-motion motors to industrial mixing processes , 2004, Conference Record of the 2004 IEEE Industry Applications Conference, 2004. 39th IAS Annual Meeting..

[59]  Roger Miranda-Colorado,et al.  A model-based velocity controller for chaotization of flexible joint robot manipulators , 2018, International Journal of Advanced Robotic Systems.

[60]  Mojtaba Ahmadieh Khanesar,et al.  Control and synchronization of chaotic systems using a novel indirect model reference fuzzy controller , 2012, Soft Comput..

[61]  Jie Zhao,et al.  Applications of Chaotic Dynamics in Robotics , 2016 .

[62]  Kestutis Pyragas Continuous control of chaos by self-controlling feedback , 1992 .