Automated Aerial Animal Detection When Spatial Resolution Conditions Are Varied

[1]  Salah Sukkarieh,et al.  Intelligent perception for cattle monitoring: A review for cattle identification, body condition score evaluation, and weight estimation , 2021, Comput. Electron. Agric..

[2]  David Shean,et al.  Automated digital elevation model (DEM) generation from very-high-resolution Planet SkySat triplet stereo and video imagery , 2021 .

[3]  Luciano Vieira Koenigkan,et al.  Cattle Detection Using Oblique UAV Images , 2020, Drones.

[4]  Huping Ye,et al.  Integrating satellite and unmanned aircraft system (UAS) imagery to model livestock population dynamics in the Longbao Wetland National Nature Reserve, China. , 2020, The Science of the total environment.

[5]  Luciano Vieira Koenigkan,et al.  Counting Cattle in UAV Images—Dealing with Clustered Animals and Animal/Background Contrast Changes , 2020, Sensors.

[6]  Luc Van Gool,et al.  Deep Unfolding Network for Image Super-Resolution , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[7]  Shaodi You,et al.  Cattle detection and counting in UAV images based on convolutional neural networks , 2019, International Journal of Remote Sensing.

[8]  Luciano Vieira Koenigkan,et al.  A Study on the Detection of Cattle in UAV Images Using Deep Learning , 2019, Sensors.

[9]  Salah Sukkarieh,et al.  Cattle segmentation and contour extraction based on Mask R-CNN for precision livestock farming , 2019, Comput. Electron. Agric..

[10]  Quanqin Shao,et al.  Surveying Wild Animals from Satellites, Manned Aircraft and Unmanned Aerial Systems (UASs): A Review , 2019, Remote. Sens..

[11]  Devis Tuia,et al.  Detecting Mammals in UAV Images: Best Practices to address a substantially Imbalanced Dataset with Deep Learning , 2018, Remote Sensing of Environment.

[12]  Juan M. Corchado,et al.  Detection of Cattle Using Drones and Convolutional Neural Networks , 2018, Sensors.

[13]  Dominique Chabot,et al.  An approach for using off-the-shelf object-based image analysis software to detect and count birds in large volumes of aerial imagery , 2018 .

[14]  Ben. G. Weinstein A computer vision for animal ecology. , 2018, The Journal of animal ecology.

[15]  Marius Gilbert,et al.  How do you find the green sheep? A critical review of the use of remotely sensed imagery to detect and count animals , 2018 .

[16]  Andrew K. Skidmore,et al.  Automatic Counting of Large Mammals from Very High Resolution Panchromatic Satellite Imagery , 2017, Remote. Sens..

[17]  Heather J. Lynch,et al.  An Object-Based Image Analysis Approach for Detecting Penguin Guano in very High Spatial Resolution Satellite Images , 2016, Remote. Sens..

[18]  Robert D. Fiete,et al.  Modeling the optical transfer function in the imaging chain , 2014 .

[19]  Nicolas Lecomte,et al.  Polar Bears from Space: Assessing Satellite Imagery as a Tool to Track Arctic Wildlife , 2014, PloS one.

[20]  Pietro Perona,et al.  Microsoft COCO: Common Objects in Context , 2014, ECCV.

[21]  Luciano Alparone,et al.  End-to-End Image Simulator for Optical Imaging Systems: Equations and Simulation Examples , 2013 .

[22]  Robert D. Fiete,et al.  Modeling the Imaging Chain of Digital Cameras , 2010 .

[23]  Pierre Jouventin,et al.  Satellite remote sensing in monitoring change of seabirds: use of Spot Image in king penguin population increase at Ile aux Cochons, Crozet Archipelago , 1995, Polar Biology.

[24]  Mathew R. Schwaller,et al.  A remote sensing analysis of Adelie penguin rookeries , 1989 .

[25]  P. Arlien‐Søborg,et al.  Science of the Total Environment , 2018 .

[26]  C. Margules,et al.  Wombats detected from space , 1980 .