Hysteresis-observer based robust tracking control of piezoelectric actuators

In this paper, a robust control approach using a novel hysteresis observer is developed for precise tracking control of piezoelectric actuators (PEAs). The proposed control methodology considers the problems of unknown or uncertain system parameters, hysteresis nonlinearity and external load disturbances. For representing the behavior of a PEA, Bouc-Wen hysteresis model is integrated with a second-order linear dynamics. It is shown that the nonlinear response of the model due to the hysteresis effect, acts as a bounded disturbance. Based on this fact a hysteresis observer is proposed to estimate the hysteresis effect. Then for real-time compensation of the observer error, parametric uncertainties and external disturbances, the sliding mode control strategy with a perturbation estimation function is utilized. By using the proposed control approach the asymptotical stability in displacement tracking and robustness to the dynamic load disturbances can be provided. Finally, experimental results are illustrated to verify the efficiency of the proposed method for practical applications.

[1]  Santosh Devasia,et al.  Hysteresis and Vibration Compensation for Piezoactuators , 1998 .

[2]  H. Elmali,et al.  Sliding mode control with perturbation estimation (SMCPE): a new approach , 1992 .

[3]  M. Krasnosel’skiǐ,et al.  Systems with Hysteresis , 1989 .

[4]  Ye-Hwa Chen,et al.  Piezomechanics using intelligent variable-structure control , 2001, IEEE Trans. Ind. Electron..

[5]  J. F. Cuttino,et al.  Performance optimization of a fast tool servo for single-point diamond turning machines , 1999 .

[6]  S. Li-ning,et al.  Hysteresis and creep compensation for piezoelectric actuator in open-loop operation , 2005 .

[7]  William J. Kaiser,et al.  Scanning Tunneling Microscopy , 2019, CIRP Encyclopedia of Production Engineering.

[8]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[9]  Gi Sang Choi,et al.  A study on position control of piezoelectric actuators , 1997, ISIE '97 Proceeding of the IEEE International Symposium on Industrial Electronics.

[10]  Dennis S. Bernstein,et al.  Semilinear Duhem model for rate-independent and rate-dependent hysteresis , 2005, IEEE Transactions on Automatic Control.

[11]  Seyed Mehdi Rezaei,et al.  Robust control of a piezoelectric stage under thermal and external load disturbances , 2009, 2009 American Control Conference.

[12]  Hakan Elmali,et al.  Implementation of sliding mode control with perturbation estimation (SMCPE) , 1996, IEEE Trans. Control. Syst. Technol..

[13]  Laura Menini,et al.  Active vibration control of an elastic plate using multiple piezoelectric sensors and actuators , 2003, Simul. Model. Pract. Theory.

[14]  D. Croft,et al.  Creep, hysteresis, and vibration compensation for piezoactuators: atomic force microscopy application , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[15]  Musa Jouaneh,et al.  Modeling hysteresis in piezoceramic actuators , 1995 .

[16]  Xuemei Sun,et al.  Analysis and control of monolithic piezoelectric nano-actuator , 2001, IEEE Trans. Control. Syst. Technol..

[17]  Michael Goldfarb,et al.  Modeling Piezoelectric Stack Actuators for Control of Mlcromanlpulatlon , 2022 .

[18]  Chih-Jer Lin,et al.  PRECISE POSITIONING OF PIEZO-ACTUATED STAGES USING HYSTERESIS-OBSERVER BASED CONTROL , 2005 .