Acceleration of proton bunches by petawatt chirped radially polarized laser pulses

[1]  Kathleen S. Youngworth,et al.  Focusing of high numerical aperture cylindrical-vector beams. , 2000, Optics express.

[2]  Gerd Leuchs,et al.  Focusing light to a tighter spot , 2000 .

[3]  Y. Salamin,et al.  Electron acceleration from rest in vacuum by an axicon Gaussian laser beam , 2006 .

[4]  S C Tidwell,et al.  Generating radially polarized beams interferometrically. , 1990, Applied optics.

[5]  Nir Davidson,et al.  High-numerical-aperture focusing of radially polarized doughnut beams with a parabolic mirror and a flat diffractive lens. , 2004, Optics letters.

[6]  T. Sokollik,et al.  Quasimonoenergetic deuteron bursts produced by ultraintense laser pulses. , 2006, Physical review letters.

[7]  F. Sohbatzadeh,et al.  Polarization effect of a chirped Gaussian laser pulse on the electron bunch acceleration , 2009, Journal of Plasma Physics.

[8]  T G Brown,et al.  Longitudinal field modes probed by single molecules. , 2001, Physical review letters.

[9]  F. Pegoraro,et al.  Radiation pressure acceleration of ultrathin foils , 2010 .

[10]  J S Li,et al.  Particle selection for laser-accelerated proton therapy feasibility study. , 2003, Medical physics.

[11]  Erik Lefebvre,et al.  Practicability of protontherapy using compact laser systems. , 2004, Medical physics.

[12]  Sven Steinke,et al.  Laser-driven quasimonoenergetic proton burst from water spray target , 2010 .

[13]  J. Debus,et al.  Experience with carbon ion radiotherapy at GSI , 2005 .

[14]  J. Badziak,et al.  Laser-driven generation of fast particles , 2007 .

[15]  R. G. Evans,et al.  Radiation pressure acceleration of thin foils with circularly polarized laser pulses , 2007, 0708.2040.

[16]  T. C. Sangster,et al.  Intense high-energy proton beams from Petawatt-laser irradiation of solids. , 2000, Physical review letters.

[17]  U Schramm,et al.  Controlled transport and focusing of laser-accelerated protons with miniature magnetic devices. , 2008, Physical review letters.

[18]  S. Fritzler,et al.  Proton beams generated with high-intensity lasers: Applications to medical isotope production , 2003 .

[19]  Thomas Graf,et al.  Radially polarized 3 kW beam from a CO2 laser with an intracavity resonant grating mirror. , 2007, Optics letters.

[20]  O Jäkel,et al.  Treatment planning for heavy ion radiotherapy: clinical implementation and application. , 2001, Physics in medicine and biology.

[21]  Y. Lumer,et al.  Efficient extracavity generation of radially and azimuthally polarized beams. , 2007, Optics letters.

[22]  Electron acceleration by a chirped short intense laser pulse in vacuum , 2005 .

[23]  M Borghesi,et al.  Stable GeV ion-beam acceleration from thin foils by circularly polarized laser pulses. , 2009, Physical review letters.

[24]  F. Sohbatzadeh,et al.  Synchronization scheme in electron vacuum acceleration by a chirped Gaussian laser pulse , 2009 .

[25]  G Leuchs,et al.  Sharper focus for a radially polarized light beam. , 2003, Physical review letters.

[26]  Direct acceleration by two interfering radially polarized laser beams , 2011 .

[27]  P B Phua,et al.  Generation of radially polarized beam with a segmented spiral varying retarder. , 2008, Optics express.

[28]  Dynamics and control of the expansion of finite-size plasmas produced in ultraintense laser-matter interactions , 2006, physics/0701124.

[29]  O Willi,et al.  Hot electrons transverse refluxing in ultraintense laser-solid interactions. , 2010, Physical review letters.

[30]  Deanna M. Pennington,et al.  Energetic proton generation in ultra-intense laser–solid interactions , 2000 .

[31]  David Neely,et al.  Scaling of proton acceleration driven by petawatt-laser-plasma interactions , 2007 .

[32]  Thomas Graf,et al.  High-power radially polarized Yb:YAG thin-disk laser with high efficiency. , 2011, Optics express.

[33]  V. Tikhonchuk Physics of laser-assisted ion acceleration , 2010 .

[34]  R. Fonseca,et al.  Direct Acceleration of Ions With Variable-Frequency Lasers , 2008, IEEE Transactions on Plasma Science.

[35]  W. Zang,et al.  Electron acceleration in vacuum induced by a tightly focused chirped laser pulse , 2010 .

[36]  Colin J. R. Sheppard,et al.  Imaging by a high aperture optical system , 1993 .

[37]  D. Cline,et al.  Vacuum laser acceleration using a radially polarized CO2 laser beam , 1999 .

[38]  Electron acceleration by a chirped Gaussian laser pulse in vacuum , 2006 .

[39]  D. N. Gupta,et al.  Realistic laser focusing effect on electron acceleration in the presence of a pulsed magnetic field , 2007 .

[40]  Dieter Schardt,et al.  Heavy-ion tumor therapy: Physical and radiobiological benefits , 2010 .

[41]  F. Pegoraro,et al.  Radiation reaction effects on radiation pressure acceleration , 2010, 1008.1685.

[42]  Quasimonoenergic collimated electrons from the ionization of nitrogen by a chirped intense laser pulse , 2009 .

[43]  C. Keitel,et al.  Optimizing direct intense-field laser acceleration of ions , 2011 .

[44]  R. Dorn,et al.  The focus of light – theoretical calculation and experimental tomographic reconstruction , 2001 .

[45]  Colin J R Sheppard,et al.  Performance parameters for focusing of radial polarization. , 2008, Optics letters.

[46]  J. Donegan,et al.  Generation of a radially polarized light beam using internal conical diffraction. , 2011, Optics express.

[47]  Shunichi Sato,et al.  Generation of a radially polarized laser beam by use of a conical Brewster prism. , 2005, Optics letters.

[48]  D. N. Gupta,et al.  Frequency chirping for resonance-enhanced electron energy during laser acceleration , 2006 .

[49]  Ernst Wintner,et al.  High-throughput of single high-power laser pulses by hollow photonic band gap fibers , 2007 .

[50]  G I Dudnikova,et al.  Monoenergetic proton beams accelerated by a radiation pressure driven shock. , 2010, Physical review letters.

[51]  S. V. Bulanov,et al.  Feasibility of using laser ion accelerators in proton therapy , 2002 .

[52]  Fulvio Cornolti,et al.  Laser acceleration of ion bunches at the front surface of overdense plasmas. , 2005, Physical review letters.

[53]  Y. Salamin Direct particle acceleration by two identical crossed radially polarized laser beams , 2010 .

[54]  Liu,et al.  Laser Acceleration of Relativistic Electrons Using the Inverse Cherenkov Effect. , 1995, Physical review letters.

[55]  S. V. Bulanov,et al.  Fast Ion Generation by High-Intensity Laser Irradiation of Solid Targets and Applications , 2006 .

[56]  K. P. Singh,et al.  Electron acceleration by a radially polarized laser pulse during ionization of low density gases , 2011 .

[57]  J. Debus,et al.  Carbon ion radiotherapy for pediatric patients and young adults treated for tumors of the skull base , 2009, Cancer.

[58]  Luca Bertagna,et al.  Target normal sheath acceleration: theory, comparison with experiments and future perspectives , 2010 .

[59]  Y. Salamin Acceleration in vacuum of bare nuclei by tightly focused radially polarized laser light. , 2007, Optics letters.

[60]  P. Audebert,et al.  Laser-driven proton scaling laws and new paths towards energy increase , 2006 .

[61]  Y. Salamin,et al.  Accurate fields of a radially polarized Gaussian laser beam , 2006 .

[62]  Colin J R Sheppard,et al.  Filter performance parameters for vectorial high-aperture wave fields. , 2008, Optics letters.

[63]  Colin J R Sheppard,et al.  Highly convergent focusing of light based on rotating dipole polarization. , 2011, Applied optics.