Additive manufacturing of active struts for piezoelectric shunt damping

One strategy to deal with unwanted vibrations of lightweight structures is to actively control systems using integrated actuators, such as piezoceramic multilayer actuators. In the presented research work, selective laser melting is used to manufacture active struts by integrating multilayer actuator into a metallic, monolithic housing. Besides the fulfilment of manufacturing constraints (e.g. low volume and individualization), a major objective of this study is to demonstrate the potential of selective laser melting for application tailored smart components. A truss structure is used as demonstration platform. Based on experimentally validated numerical models of the truss structure, a beneficial position of the active strut and the mode to be damped are determined. A model of the multilayer actuator and corresponding housing allows the dimensioning of the housing stiffness to maximize the electromechanical coupling. Thus, an efficient resistive resonant shunted system can be achieved. Numerically designed active struts with specific stiffnesses are manufactured and experimentally characterized. Measurements with connected RL-shunts using the active struts are performed and compared to the original system. Results indicate an efficient damping of the desired mode by means of application tailored active struts. The presented procedure allows rapid design of versatile actuator housings for an optimized electromechanical coupling.

[1]  Ian Campbell,et al.  Additive manufacturing: rapid prototyping comes of age , 2012 .

[2]  F. Prinz,et al.  Analytical and experimental study on noncontact sensing with embedded fiber-optic sensors in rotating metal parts , 2004, Journal of Lightwave Technology.

[3]  Luc Gaudiller,et al.  Blind switch damping (BSD): A self-adaptive semi-active damping technique , 2009 .

[4]  Liang Hou,et al.  Additive manufacturing and its societal impact: a literature review , 2013 .

[5]  Diana A. Lados,et al.  Additive Manufacturing: Making Imagination the Major Limitation , 2014 .

[6]  Nesbitt W. Hagood,et al.  Damping of structural vibrations with piezoelectric materials and passive electrical networks , 1991 .

[7]  Andrew J. Fleming,et al.  A broadband controller for shunt piezoelectric damping of structural vibration , 2003 .

[8]  E. Chlebus,et al.  Microstructure and mechanical behaviour of Ti―6Al―7Nb alloy produced by selective laser melting , 2011 .

[9]  Rui-di Li,et al.  A Powder Shrinkage Model for Describing Real Layer Thickness during Selective Laser Melting Process , 2010 .

[10]  V. Wittstock,et al.  Smart metal sheets by direct functional integration of piezoceramic fibers in microformed structures , 2014 .

[11]  R. Poprawe,et al.  Laser additive manufacturing of metallic components: materials, processes and mechanisms , 2012 .

[12]  T. K. Kundra,et al.  Additive Manufacturing Technologies , 2018 .

[13]  Jan T. Sehrt Möglichkeiten und Grenzen bei der generativen Herstellung metallischer Bauteile durch das Strahlschmelzverfahren , 2010 .

[14]  Dennis Morris,et al.  CubeSat Advanced Technology Propulsion System Concept , 2014 .

[15]  M. Ruzzene,et al.  Broadband vibration control through periodic arrays of resonant shunts: experimental investigation on plates , 2009 .

[16]  K. W. Wang,et al.  Active-passive hybrid piezoelectric networks for vibration control: comparisons and improvement , 2001 .

[17]  Saburo Matunaga,et al.  Vibration Suppression Using Acceleration Feedback Control with Multiple Proof-Mass Actuators , 1997 .

[18]  R. Poprawe,et al.  Lasertechnik für die Fertigung : Grundlagen, Perspektiven und Beispiele für den innovativen Ingenieur ; mit 26 Tabellen , 2005 .

[19]  Vojislav Petrovic,et al.  Additive layered manufacturing: sectors of industrial application shown through case studies , 2011 .

[20]  E. Crawley,et al.  Use of piezoelectric actuators as elements of intelligent structures , 1987 .

[21]  Alexander Verl,et al.  The Bionic Handling Assistant: a success story of additive manufacturing , 2011 .

[22]  A. Esnaola,et al.  Study of mechanical properties of AISI 316 stainless steel processed by “selective laser melting”, following different manufacturing strategies , 2010 .

[23]  David J. Ewins,et al.  Modal Testing: Theory, Practice, And Application , 2000 .

[24]  Joseph J. Hollkamp,et al.  A self-tuning piezoelectric vibration absorber , 1994 .

[25]  Jer-Nan Juang Optimal design of a passive vibration absorber for a truss beam , 1983 .

[26]  Bernhard Mueller,et al.  Additive Manufacturing Technologies – Rapid Prototyping to Direct Digital Manufacturing , 2012 .

[27]  E. Breitbach,et al.  Lightweight engine mounting based on adaptive CFRP struts for active vibration suppression , 1998 .

[28]  Xiaochun Li,et al.  Embedded sensors in layered manufacturing , 2001 .

[29]  Patrick Guillaume,et al.  3D Printing for Intelligent Metallic Structures , 2014 .

[30]  A. Preumont,et al.  The damping of a truss structure with a piezoelectric transducer , 2008 .

[31]  Kelly Cohen,et al.  Passive damping augmentation for vibration suppression in flexible latticed beam-like space structures , 1994 .

[32]  David W. Rosen,et al.  Extrusion-Based Systems , 2010 .

[33]  Robert L. Forward,et al.  Electronic damping of vibrations in optical structures. , 1979, Applied optics.

[34]  Nesbitt W. Hagood,et al.  Experimental investigation into passive damping enhancement for space structures , 1991 .

[35]  Konrad Wegener,et al.  Fatigue performance of additive manufactured metallic parts , 2013 .

[36]  Holger Hanselka,et al.  Implementation and Characterisation of the Dynamic Behaviourof a Three-dimensional Truss Structure for EvaluatingSmart Devices. , 2010 .