Modelling uncertain positive and negative reasons in decision aiding

The use of positive and negative reasons in inference and decision aiding is a recurrent issue of investigation as far as the type of formal language to use within a DSS is concerned. A language enabling to explicitly take into account such reasons is Belnap's logic and the four valued logics derived from it. In this paper, we explore the interpretation of a continuous extension of a four valued logic as a necessity degree (in possibility theory). It turns out that, in order to take full advantage of the four values, we have to consider ''sub-normalised'' necessity measures. Under such a hypothesis four valued logics become the natural logical frame for such an approach.

[1]  Philippe Fortemps,et al.  A Graded Quadrivalent Logic for Ordinal Preference Modelling: Loyola–Like Approach , 2002, Fuzzy Optim. Decis. Mak..

[2]  Thierry Marchant,et al.  Evaluation and Decision Models: A Critical Perspective , 2000 .

[3]  Patrick Doherty,et al.  Partial logics and partial preferences. , 1992 .

[4]  Didier Dubois,et al.  "Not Impossible" vs. "Guaranteed Possible" in Fusion and Revision , 2001, ECSQARU.

[5]  Matthew L. Ginsberg,et al.  Multivalued logics: a uniform approach to reasoning in artificial intelligence , 1988, Comput. Intell..

[6]  Ofer Arieli,et al.  Paraconsistent reasoning and preferential entailments by signed quantified Boolean formulae , 2007, TOCL.

[7]  Bernard De Baets,et al.  Fuzzy Preference Modelling: Fundamentals and Recent Advances , 2008, Fuzzy Sets and Their Extensions: Representation, Aggregation and Models.

[8]  Alexis Tsoukiàs,et al.  A first-order, four valued, weakly paraconsistent logic and its relation to rough sets semantics , 2002 .

[9]  Alexis Tsoukiàs,et al.  On the continuous extension of a four valued logic for preference modelling , 1998 .

[10]  Dominique Dubarle Essai sur la généralisation naturelle de la logique usuelle (premier mémoire) , 1989 .

[11]  N. Rescher Introduction to Value Theory , 1969 .

[12]  Chris Cornelis,et al.  Bilattice-Based Squares and Triangles , 2005, ECSQARU.

[13]  Didier Dubois,et al.  Evaluation and decision models: a critical perspective , 2003 .

[14]  G. Choquet Theory of capacities , 1954 .

[15]  Matthias Ehrgott,et al.  Multiple criteria decision analysis: state of the art surveys , 2005 .

[16]  A. Tsoukiàs,et al.  From Concordance / Discordance to the Modelling of Positive and Negative Reasons in Decision Aiding , 2002 .

[17]  Philippe Smets,et al.  The Transferable Belief Model , 1994, Artif. Intell..

[18]  Bernard De Baets,et al.  Recent advances in fuzzy preference modelling , 1996 .

[19]  Bernard De Baets,et al.  Characterizable fuzzy preference structures , 1998, Ann. Oper. Res..

[20]  Didier Dubois,et al.  Towards a Possibilistic Logic Handling of Preferences , 1999, Applied Intelligence.

[21]  Dan S. Felsenthal,et al.  Ternary voting games , 1997, Int. J. Game Theory.

[22]  Bernard Roy,et al.  Main sources of inaccurate determination, uncertainty and imprecision in decision models , 1989 .

[23]  Alexis Tsoukiàs,et al.  A qualitative approach to face uncertainty in decision models , 1994, Decis. Support Syst..

[24]  A. Tsoukiàs,et al.  A new axiomatic foundation of partial comparability , 1995 .

[25]  Philippe Smets,et al.  The Transferable Belief Model , 1991, Artif. Intell..

[26]  M. Grabisch,et al.  Fuzzy Measures and Integrals in MCDA , 2004 .

[27]  Didier Dubois,et al.  Possibility theory , 2018, Scholarpedia.

[28]  Nuel D. Belnap,et al.  A Useful Four-Valued Logic , 1977 .

[29]  Marc Roubens,et al.  Fuzzy Preference Modelling and Multicriteria Decision Support , 1994, Theory and Decision Library.

[30]  Diderik Batens Frontiers of Paraconsistent Logic , 2000 .

[31]  Arnon Avron,et al.  The Value of the Four Values , 1998, Artif. Intell..

[32]  M. Grabisch,et al.  Bi-capacities for decision making on bipolar scales , 2002 .

[33]  Bernard De Baets,et al.  Fuzzy preference structures and their characterization. , 1995 .

[34]  李幼升,et al.  Ph , 1989 .

[35]  ParaconsistencyOfer,et al.  Bilattices and Paraconsistency , 1997 .

[36]  Philippe Smets,et al.  The Canonical Decomposition of a Weighted Belief , 1995, IJCAI.

[37]  N. Sutin Of First Order , 2007 .

[38]  R. Słowiński Fuzzy sets in decision analysis, operations research and statistics , 1999 .

[39]  J. M. Dunn,et al.  Modern Uses of Multiple-Valued Logic , 1977 .

[40]  Raymond Bisdorff,et al.  Human centered processes and decision support systems , 2002, Eur. J. Oper. Res..

[41]  Nuel D. Belnap,et al.  How a Computer Should Think , 2019, New Essays on Belnap-­Dunn Logic.

[42]  Newton C. A. da Costa,et al.  On the theory of inconsistent formal systems , 1974, Notre Dame J. Formal Log..

[43]  Melvin Fitting,et al.  Bilattices and the Semantics of Logic Programming , 1991, J. Log. Program..

[44]  Rajeev Alur,et al.  Deterministic generators and games for Ltl fragments , 2004, TOCL.

[45]  Didier Dubois Possibility Theory, Probability Theory and Multiple-Valued Logics: A Clarification , 2001, Fuzzy Days.

[46]  Alexis Tsoukiàs,et al.  Extended preference structures in MCDA , 1997 .

[47]  Nicholas Rescher,et al.  The logic of inconsistency , 1979 .

[48]  S. Greco,et al.  Dealing with interactivity between bi-polar multiple criteria preferences in outranking methods , 2003 .

[49]  Michel Grabisch,et al.  Fuzzy Measures and Integrals , 1995 .

[50]  C. Alsina On a family of connectives for fuzzy sets , 1985 .