Finding All Small Error-Prone Substructures in LDPC Codes

It is proven in this work that it is NP-complete to exhaustively enumerate small error-prone substructures in arbitrary, finite-length low-density parity-check (LDPC) codes. Two error-prone patterns of interest include stopping sets for binary erasure channels (BECs) and trapping sets for general memoryless symmetric channels. Despite the provable hardness of the problem, this work provides an exhaustive enumeration algorithm that is computationally affordable when applied to codes of practical short lengths n ap 500. By exploiting the sparse connectivity of LDPC codes, the stopping sets of size les 13 and the trapping sets of size les11 can be exhaustively enumerated. The central theorem behind the proposed algorithm is a new provably tight upper bound on the error rates of iterative decoding over BECs. Based on a tree-pruning technique, this upper bound can be iteratively sharpened until its asymptotic order equals that of the error floor. This feature distinguishes the proposed algorithm from existing non-exhaustive ones that correspond to finding lower bounds of the error floor. The upper bound also provides a worst case performance guarantee that is crucial to optimizing LDPC codes when the target error rate is beyond the reach of Monte Carlo simulation. Numerical experiments on both randomly and algebraically constructed LDPC codes demonstrate the efficiency of the search algorithm and its significant value for finite-length code optimization.

[1]  P. Vontobel,et al.  Graph-Cover Decoding and Finite-Length Analysis of Message-Passing Iterative Decoding of LDPC Codes , 2005, ArXiv.

[2]  Alon Orlitsky,et al.  Stopping set distribution of LDPC code ensembles , 2003, IEEE Transactions on Information Theory.

[3]  Amir H. Banihashemi,et al.  A heuristic search for good low-density parity-check codes at short block lengths , 2001, ICC 2001. IEEE International Conference on Communications. Conference Record (Cat. No.01CH37240).

[4]  Marc P. C. Fossorier,et al.  Quasi-Cyclic Low-Density Parity-Check Codes From Circulant Permutation Matrices , 2004, IEEE Trans. Inf. Theory.

[5]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[6]  Elwyn R. Berlekamp,et al.  On the inherent intractability of certain coding problems (Corresp.) , 1978, IEEE Trans. Inf. Theory.

[7]  Emre Telatar,et al.  Finite-length analysis of low-density parity-check codes on the binary erasure channel , 2002, IEEE Trans. Inf. Theory.

[8]  Ali Emre Pusane,et al.  Pseudo-Codewords in LDPC Convolutional Codes , 2006, 2006 IEEE International Symposium on Information Theory.

[9]  Daniel J. Costello,et al.  LDPC block and convolutional codes based on circulant matrices , 2004, IEEE Transactions on Information Theory.

[10]  Thomas J. Richardson,et al.  Error Floors of LDPC Codes , 2003 .

[11]  Shlomo Shamai,et al.  Tightened Upper Bounds on the ML Decoding Error Probability of Binary Linear Block Codes , 2006, 2006 IEEE International Symposium on Information Theory.

[12]  Evangelos Eleftheriou,et al.  Regular and irregular progressive edge-growth tanner graphs , 2005, IEEE Transactions on Information Theory.

[13]  Chih-Chun Wang Code Annealing and the Suppressing Effect of the Cyclically Lifted LDPC Code Ensemble , 2006, 2006 IEEE Information Theory Workshop - ITW '06 Chengdu.

[14]  Alon Orlitsky,et al.  Finite-length analysis of LDPC codes with large left degrees , 2002, Proceedings IEEE International Symposium on Information Theory,.

[15]  Shlomo Hoory,et al.  The Size of Bipartite Graphs with a Given Girth , 2002, J. Comb. Theory, Ser. B.

[16]  David J. C. MacKay,et al.  Weaknesses of Margulis and Ramanujan-Margulis low-density parity-check cCodes , 2003, MFCSIT.

[17]  Simon Litsyn,et al.  Distance distributions in ensembles of irregular low-density parity-check codes , 2003, IEEE Trans. Inf. Theory.

[18]  Ralf Koetter,et al.  Lower bounds on the minimum pseudoweight of linear codes , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[19]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[20]  Alexander Vardy,et al.  The intractability of computing the minimum distance of a code , 1997, IEEE Trans. Inf. Theory.

[21]  Gilles Zémor,et al.  On the minimum distance of structured LDPC codes with two variable nodes of degree 2 per parity-check equation , 2006, 2006 IEEE International Symposium on Information Theory.

[22]  Priti Shankar,et al.  On the Complexity of finding stopping set size in Tanner Graphs , 2006, 2006 40th Annual Conference on Information Sciences and Systems.

[23]  S. G. Wilson,et al.  Analysis and Design of Moderate Length Regular LDPC Codes with Low Error Floors , 2006, 2006 40th Annual Conference on Information Sciences and Systems.

[24]  David J. C. MacKay,et al.  Good Error-Correcting Codes Based on Very Sparse Matrices , 1997, IEEE Trans. Inf. Theory.

[25]  Dariush Divsalar,et al.  Ensemble Weight Enumerators for Protograph LDPC Codes , 2006, 2006 IEEE International Symposium on Information Theory.

[26]  Simon Litsyn,et al.  On ensembles of low-density parity-check codes: Asymptotic distance distributions , 2002, IEEE Trans. Inf. Theory.

[27]  A. Hasman,et al.  Probabilistic reasoning in intelligent systems: Networks of plausible inference , 1991 .

[28]  G. A. Margulis,et al.  Explicit constructions of graphs without short cycles and low density codes , 1982, Comb..

[29]  Richard D. Wesel,et al.  Selective avoidance of cycles in irregular LDPC code construction , 2004, IEEE Transactions on Communications.

[30]  Michael Sipser,et al.  Introduction to the Theory of Computation , 1996, SIGA.

[31]  H. Vincent Poor,et al.  Density evolution for asymmetric memoryless channels , 2005, IEEE Transactions on Information Theory.

[32]  C. Berrou,et al.  Computing the minimum distances of linear codes by the error impulse method , 2002, Proceedings IEEE International Symposium on Information Theory,.

[33]  Shlomo Shamai,et al.  Variations on the Gallager bounds, connections, and applications , 2002, IEEE Trans. Inf. Theory.

[34]  Brendan J. Frey,et al.  Factor graphs and the sum-product algorithm , 2001, IEEE Trans. Inf. Theory.

[35]  Simon Litsyn,et al.  A Method for Constructing LDPC Codes with Low Error Floor , 2006, 2006 IEEE International Symposium on Information Theory.

[36]  Rüdiger L. Urbanke,et al.  The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.

[37]  P. Vontobel,et al.  Constructions of LDPC Codes using Ramanujan Graphs and Ideas from Margulis , 2000 .

[38]  Priti Shankar,et al.  On the Complexity of finding Stopping Distance in Tanner Graphs , 2005, ArXiv.

[39]  Evangelos Eleftheriou,et al.  On the computation of the minimum distance of low-density parity-check codes , 2004, 2004 IEEE International Conference on Communications (IEEE Cat. No.04CH37577).

[40]  Ronald Holzlöhner,et al.  Evaluation of the very low BER of FEC codes using dual adaptive importance sampling , 2005, IEEE Communications Letters.

[41]  Khaled A. S. Abdel-Ghaffar,et al.  Stopping Set Enumerators of Full-Rank Parity-Check Matrices of Hamming Codes , 2006, 2006 IEEE International Symposium on Information Theory.

[42]  Alex J. Grant,et al.  Which Codes Have$4$-Cycle-Free Tanner Graphs? , 2006, IEEE Transactions on Information Theory.

[43]  Claude Berrou,et al.  Computing the minimum distance of linear codes by the error impulse method , 2002, Global Telecommunications Conference, 2002. GLOBECOM '02. IEEE.

[44]  T. Richrdson,et al.  Finite-length analysis of various low-density parity-check ensembles for the binary erasure channel , 2002, Proceedings IEEE International Symposium on Information Theory,.

[45]  O. Milenkovic,et al.  Algorithmic and combinatorial analysis of trapping sets in structured LDPC codes , 2005, 2005 International Conference on Wireless Networks, Communications and Mobile Computing.

[46]  Alexander Vardy,et al.  Which codes have cycle-free Tanner graphs? , 1999, IEEE Trans. Inf. Theory.

[47]  Michael Chertkov,et al.  Instanton analysis of Low-Density Parity-Check codes in the error-floor regime , 2006, 2006 IEEE International Symposium on Information Theory.

[48]  Xiaohu You,et al.  An Efficient Girth-Locating Algorithm for Quasi-Cyclic LDPC Codes , 2006, 2006 IEEE International Symposium on Information Theory.

[49]  Alexander Vardy,et al.  On the stopping distance and the stopping redundancy of codes , 2006, IEEE Transactions on Information Theory.

[50]  Bane V. Vasic,et al.  Diagnosis of weaknesses in modern error correction codes: a physics approach , 2005, Physical review letters.

[51]  Madhu Sudan,et al.  Hardness of approximating the minimum distance of a linear code , 1999, IEEE Trans. Inf. Theory.

[52]  Andrea Montanari,et al.  Further results on finite-length scaling for iteratively decoded LDPC ensembles , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[53]  J. Yedidia,et al.  Renormalization group approach to error-correcting codes , 2001, cond-mat/0106540.

[54]  Richard D. Wesel,et al.  Construction of short block length irregular low-density parity-check codes , 2004, 2004 IEEE International Conference on Communications (IEEE Cat. No.04CH37577).