Encoding color information for visual tracking: Algorithms and benchmark

While color information is known to provide rich discriminative clues for visual inference, most modern visual trackers limit themselves to the grayscale realm. Despite recent efforts to integrate color in tracking, there is a lack of comprehensive understanding of the role color information can play. In this paper, we attack this problem by conducting a systematic study from both the algorithm and benchmark perspectives. On the algorithm side, we comprehensively encode 10 chromatic models into 16 carefully selected state-of-the-art visual trackers. On the benchmark side, we compile a large set of 128 color sequences with ground truth and challenge factor annotations (e.g., occlusion). A thorough evaluation is conducted by running all the color-encoded trackers, together with two recently proposed color trackers. A further validation is conducted on an RGBD tracking benchmark. The results clearly show the benefit of encoding color information for tracking. We also perform detailed analysis on several issues, including the behavior of various combinations between color model and visual tracker, the degree of difficulty of each sequence for tracking, and how different challenge factors affect the tracking performance. We expect the study to provide the guidance, motivation, and benchmark for future work on encoding color in visual tracking.

[1]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Horst Bischof,et al.  Real-Time Tracking via On-line Boosting , 2006, BMVC.

[3]  Robert T. Collins,et al.  An Open Source Tracking Testbed and Evaluation Web Site , 2005 .

[4]  Theo Gevers,et al.  Evaluation of Color STIPs for Human Action Recognition , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[5]  Yanxi Liu,et al.  Online Selection of Discriminative Tracking Features , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Seunghoon Hong,et al.  Online Graph-Based Tracking , 2014, ECCV.

[7]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[8]  Jianxiong Xiao,et al.  Tracking Revisited Using RGBD Camera: Unified Benchmark and Baselines , 2013, 2013 IEEE International Conference on Computer Vision.

[9]  Yang Lu,et al.  Online Object Tracking, Learning and Parsing with And-Or Graphs , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Fatih Murat Porikli,et al.  Integral histogram: a fast way to extract histograms in Cartesian spaces , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[11]  Horst Bischof,et al.  Semi-supervised On-Line Boosting for Robust Tracking , 2008, ECCV.

[12]  Lei Zhang,et al.  Fast Compressive Tracking , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Zhibin Hong,et al.  Tracking Using Multilevel Quantizations , 2014, ECCV.

[14]  Hwann-Tzong Chen,et al.  Trust-region methods for real-time tracking , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[15]  Haibin Ling,et al.  Robust Visual Tracking and Vehicle Classification via Sparse Representation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Michael Felsberg,et al.  Adaptive Color Attributes for Real-Time Visual Tracking , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[17]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[18]  Narendra Ahuja,et al.  Robust Visual Tracking via Structured Multi-Task Sparse Learning , 2012, International Journal of Computer Vision.

[19]  Shai Avidan,et al.  Locally Orderless Tracking , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[20]  Junseok Kwon,et al.  Visual tracking decomposition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[21]  Michael Isard,et al.  CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.

[22]  Junseok Kwon,et al.  Tracking by Sampling Trackers , 2011, 2011 International Conference on Computer Vision.

[23]  Gérard G. Medioni,et al.  Context tracker: Exploring supporters and distracters in unconstrained environments , 2011, CVPR 2011.

[24]  Cordelia Schmid,et al.  Learning Color Names for Real-World Applications , 2009, IEEE Transactions on Image Processing.

[25]  Patrick Pérez,et al.  Color-Based Probabilistic Tracking , 2002, ECCV.

[26]  Simone Calderara,et al.  Visual Tracking: An Experimental Survey , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Laura Sevilla-Lara,et al.  Distribution fields for tracking , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[28]  Huchuan Lu,et al.  Visual tracking via adaptive structural local sparse appearance model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[29]  Gertjan J. Burghouts,et al.  Performance evaluation of local colour invariants , 2009, Comput. Vis. Image Underst..

[30]  Michael Felsberg,et al.  The Visual Object Tracking VOT2013 Challenge Results , 2013, ICCV 2013.

[31]  Rui Caseiro,et al.  Exploiting the Circulant Structure of Tracking-by-Detection with Kernels , 2012, ECCV.

[32]  Jin Gao,et al.  Transfer Learning Based Visual Tracking with Gaussian Processes Regression , 2014, ECCV.

[33]  Stan Sclaroff,et al.  MEEM: Robust Tracking via Multiple Experts Using Entropy Minimization , 2014, ECCV.

[34]  Didier Stricker,et al.  A Superior Tracking Approach: Building a Strong Tracker through Fusion , 2014, ECCV.

[35]  Ehud Rivlin,et al.  Robust Fragments-based Tracking using the Integral Histogram , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[36]  Ming-Hsuan Yang,et al.  Robust Object Tracking with Online Multiple Instance Learning , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  Haibin Ling,et al.  Real time robust L1 tracker using accelerated proximal gradient approach , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[38]  Rui Caseiro,et al.  High-Speed Tracking with Kernelized Correlation Filters , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[39]  Haibin Ling,et al.  Finding the Best from the Second Bests - Inhibiting Subjective Bias in Evaluation of Visual Tracking Algorithms , 2013, 2013 IEEE International Conference on Computer Vision.

[40]  Junzhou Huang,et al.  Robust tracking using local sparse appearance model and K-selection , 2011, CVPR 2011.

[41]  Michael Felsberg,et al.  Coloring Action Recognition in Still Images , 2013, International Journal of Computer Vision.

[42]  Lei Zhang,et al.  Real-Time Compressive Tracking , 2012, ECCV.

[43]  Steven A. Shafer,et al.  Using color to separate reflection components , 1985 .

[44]  Fahad Shahbaz Khan,et al.  Modulating Shape Features by Color Attention for Object Recognition , 2012, International Journal of Computer Vision.

[45]  Yi Wu,et al.  Online Object Tracking: A Benchmark , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[46]  Abhinav Gupta,et al.  Transferring Rich Feature Hierarchies for Robust Visual Tracking , 2015, ArXiv.

[47]  Huchuan Lu,et al.  Robust object tracking via sparsity-based collaborative model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[48]  Narendra Ahuja,et al.  Robust visual tracking via multi-task sparse learning , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[49]  Cordelia Schmid,et al.  Coloring Local Feature Extraction , 2006, ECCV.

[50]  Luc Van Gool,et al.  Beyond semi-supervised tracking: Tracking should be as simple as detection, but not simpler than recognition , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[51]  Gang Hua,et al.  Context-Aware Visual Tracking , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[52]  Koen E. A. van de Sande,et al.  Evaluating Color Descriptors for Object and Scene Recognition , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[53]  Fahad Shahbaz Khan,et al.  Color attributes for object detection , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[54]  Zdenek Kalal,et al.  Tracking-Learning-Detection , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.