On Mittag-Leffler distributions and related stochastic processes

Random variables with Mittag-Leffler distribution can take values either in the set of non-negative integers or in the positive real line. They can be of two different types, one (type-1) heavy-tailed with index α ? ( 0 , 1 ) , the other (type-2) possessing all its moments. We investigate various stochastic processes where they play a key role, among which: the discrete space/time Neveu branching process, the discrete-space continuous-time Neveu branching process, the continuous space/time Neveu branching process (CSBP) and renewal processes with rare events. Its relation to (discrete or continuous) self-decomposability and branching processes with immigration is emphasized. Special attention will be paid to the Neveu CSBP for its connection with the Bolthausen-Sznitman coalescent. In this context, and following a recent work of Mohle (2015), a type-2 Mittag-Leffler process turns out to be the Siegmund dual to Neveu's CSBP block-counting process arising in sampling from P D ( e - t , 0 ) . Further combinatorial developments of this model are investigated.

[1]  D. Siegmund The Equivalence of Absorbing and Reflecting Barrier Problems for Stochastically Monotone Markov Processes , 1976 .

[2]  J. Pitman Coalescents with multiple collisions , 1999 .

[3]  N. Berestycki,et al.  BETA-COALESCENTS AND CONTINUOUS STABLE RANDOM TREES , 2006, math/0602113.

[4]  A. D. Barbour,et al.  On the asymptotic behaviour of branching processes with infinite mean , 1977, Advances in Applied Probability.

[5]  Gerd Christoph,et al.  The Generalized Discrete Linnik Distributions , 1998 .

[6]  L. Beghin,et al.  Fractional Poisson processes and related planar random motions , 2009 .

[7]  佐藤 健一 Lévy processes and infinitely divisible distributions , 2013 .

[8]  Self-Decomposable Discrete Distributions and Branching Processes , 1982 .

[9]  Almost sure convergence in Markov branching processes with infinite mean , 1977 .

[10]  Andreas E. Kyprianou,et al.  Fluctuations of Lévy Processes with Applications: Introductory Lectures , 2014 .

[11]  T. E. Harris,et al.  The Theory of Branching Processes. , 1963 .

[12]  J. Bertoin,et al.  The Bolthausen–Sznitman coalescent and the genealogy of continuous-state branching processes , 2000 .

[13]  Stewart N. Ethier,et al.  Fleming-Viot processes in population genetics , 1993 .

[14]  Gerd Christoph,et al.  Discrete stable random variables , 1998 .

[15]  Arak M. Mathai SOME PROPERTIES OF MITTAG-LEFFLER FUNCTIONS AND MATRIX-VARIATE ANALOGUES: A STATISTICAL PERSPECTIVE , 2010 .

[16]  Gerd Christoph,et al.  Positive Linnik and Discrete Linnik Distributions , 2001 .

[17]  Matthias Birkner,et al.  Computing likelihoods for coalescents with multiple collisions in the infinitely many sites model , 2008, Journal of mathematical biology.

[18]  T. Huillet DIFFUSION VERSUS JUMP PROCESSES ARISING AS SCALING LIMITS IN POPULATION GENETICS , 2012 .

[19]  W. Vervaat On a stochastic difference equation and a representation of non–negative infinitely divisible random variables , 1979, Advances in Applied Probability.

[20]  Lajos Takács,et al.  Combinatorial Methods in the Theory of Stochastic Processes , 1967 .

[21]  On a Schröder equation arising in branching processes , 1980 .

[22]  R. N. Pillai,et al.  Discrete Mittag-Leffler distributions , 1995 .

[23]  Masaaki Sibuya,et al.  Generalized hypergeometric, digamma and trigamma distributions , 1979 .

[24]  Thierry Huillet,et al.  On Linnik's continuous-time random walks , 2000 .

[25]  D. Darling The Galton-Watson process with infinite mean , 1970, Journal of Applied Probability.

[26]  Andreas N. Lagerås,et al.  Genealogy for supercritical branching processes , 2006, Journal of Applied Probability.

[27]  H. Bunke,et al.  T. E. Harris, The Theory of Branching Processes (Die Grundlehren der mathematischen Wissenschaften, Band 119). XVI + 230 S. m. 6 Fig. Berlin/Göttingen/Heidelberg 1963. Springer‐Verlag. Preis geb. DM 36,— , 1965 .

[28]  Luc Devroye,et al.  A NOTE ON LINNIK'S DISTRIBUTION , 1990 .

[29]  Martin Mohle The Mittag-Leffler process and a scaling limit for the block counting process of the Bolthausen-Sznitman coalescent , 2014, 1410.7354.

[30]  Jean Bertoin,et al.  Subordinators, Lévy processes with no negative jumps, and branching processes , 2000 .

[31]  V. Zolotarev,et al.  Chance and Stability, Stable Distributions and Their Applications , 1999 .

[32]  J. Kingman Random Discrete Distributions , 1975 .

[33]  A. Kyprianou Introductory Lectures on Fluctuations of Lévy Processes with Applications , 2006 .

[34]  T. Huillet Energy cascades as branching processes with emphasis on Neveu's approach to Derrida's random energy model , 2003, Advances in Applied Probability.

[35]  D. R. Grey Asymptotic behaviour of continuous time, continuous state-space branching processes , 1974 .

[36]  T. Huillet Pareto genealogies arising from a Poisson branching evolution model with selection , 2013, Journal of mathematical biology.

[37]  Francesco Mainardi,et al.  Beyond the Poisson renewal process: A tutorial survey , 2007 .

[38]  C. Charalambides,et al.  Review of the stirling numbers, their generalizations and Statistical Applications , 1988 .

[39]  J. Lamperti Semi-stable stochastic processes , 1962 .

[40]  O. Johnson Log-concavity and the maximum entropy property of the Poisson distribution , 2006, math/0603647.

[41]  N. H. Bingham,et al.  Continuous branching processes and spectral positivity , 1976 .

[42]  R. Gorenflo,et al.  A fractional generalization of the Poisson processes , 2007, math/0701454.

[43]  T. Huillet,et al.  On extreme events for non-spatial and spatial branching Brownian motions , 2015 .

[44]  R. Gorenflo,et al.  Mittag-Leffler Functions, Related Topics and Applications , 2014, Springer Monographs in Mathematics.

[45]  P. A. P. Moran,et al.  An introduction to probability theory , 1968 .

[46]  Olivier H'enard The fixation line in the ${\Lambda}$-coalescent , 2013, 1307.0784.

[47]  N. Laskin Fractional Poisson process , 2003 .

[48]  C. Klüppelberg,et al.  Modelling Extremal Events , 1997 .

[49]  John Lamperti,et al.  Continuous state branching processes , 1967 .

[50]  C. Sparrow The Fractal Geometry of Nature , 1984 .

[51]  Fw Fred Steutel,et al.  Discrete analogues of self-decomposability and stability , 1979 .

[52]  J. Pitman Combinatorial Stochastic Processes , 2006 .

[53]  S. Feng The Poisson-Dirichlet Distribution and Related Topics: Models and Asymptotic Behaviors , 2010 .

[54]  M. Möhle,et al.  A spectral decomposition for the block counting process of the Bolthausen-Sznitman coalescent , 2014 .

[55]  G. Christoph,et al.  Scaled Sibuya distribution and discrete self-decomposability , 2000 .

[56]  Eugene Lukacs,et al.  Developments in Characteristic Function Theory , 1976 .

[57]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[58]  D. Ruelle A mathematical reformulation of Derrida's REM and GREM , 1987 .

[59]  R. N. Pillai On Mittag-Leffler functions and related distributions , 1990 .

[60]  J. Pitman,et al.  The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator , 1997 .

[61]  Ear,et al.  The Fractional Poisson Process and the Inverse Stable Subordinator , 2011 .

[62]  Erhan Çinlar,et al.  Introduction to stochastic processes , 1974 .

[63]  T. Rolski On random discrete distributions , 1980 .

[64]  David P. Smith,et al.  On the Integral Equation of Renewal Theory , 2013 .

[65]  Luc Devroye,et al.  A triptych of discrete distributions related to the stable law , 1993 .