Robust Identification and Control Based on Ellipsoidal Parametric Uncertainty Descriptions

Connecting identification and controller design is a major challenge to modern control theory. Here, connection is made through ellipsoidal descriptions of parameter uncertainty. Identification is performed in the bounded-error context. H ∞ techniques are then employed to maximize the size of an ellipsoid with the same center and shape and for which performance of the synthesized controller is guaranteed. It is always possible to choose the bound on the error in the estimation phase so that the two ellipsoids are identical. The resulting procedure can be seen as assuming the largest error bounds for which robust performance can still be guaranteed. A prototype algorithm is proposed, and applied to the flexible transmission used in a now classical benchmark. Although the experiment, a single closed-loop step response with an unknown controller in the loop, was much less informative than those performed to get the models used in the benchmark (open-loop experiments with pseudo-random binary sequences as input), a satisfactory performance in terms of closed-loop response could still be obtained.

[1]  Ulf Holmberg,et al.  Robust Control Synthesis for Plants with Parametric Uncertainties , 1995 .

[2]  S. Yurkovich,et al.  Exploiting ellipsoidal parameter set estimates in H robust control design , 1998 .

[3]  M. Milanese,et al.  Closed-loop identification of uncertainty models for robust control design: a set membership approach , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[4]  Yves Piguet,et al.  Multi-model Weighted Pole-placement Design , 1997, Eur. J. Control.

[5]  Ioan Doré Landau,et al.  A Flexible Transmission System as a Benchmark for Robust Digital Control , 1995, Eur. J. Control.

[6]  Y. F. Huang,et al.  On the value of information in system identification - Bounded noise case , 1982, Autom..

[7]  Michel Gevers,et al.  Iterative weighted least-squares identification and weighted LQG control design , 1995, Autom..

[8]  E. Walter,et al.  Exact recursive polyhedral description of the feasible parameter set for bounded-error models , 1989 .

[9]  Karl Johan Åström,et al.  Matching Criteria for Control and Identification , 1993 .

[10]  B. Anderson,et al.  Least-squares parameter set estimation for robust control design , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[11]  Shankar P. Bhattacharyya,et al.  Robust Control: The Parametric Approach , 1995 .

[12]  Michel Gevers,et al.  Towards a Joint Design of Identification and Control , 1993 .

[13]  Dick den Hertog,et al.  Interior Point Approach to Linear, Quadratic and Convex Programming: Algorithms and Complexity , 1994 .

[14]  Gustavo Belforte,et al.  Parameter estimation algorithms for a set-membership description of uncertainty , 1990, Autom..

[15]  Eric Walter,et al.  Minimum-volume ellipsoids containing compact sets : Application to parameter bounding , 1994, Autom..

[16]  Alexandre Megretski,et al.  A convex parameterization of robustly stabilizing controllers , 1994, IEEE Trans. Autom. Control..

[17]  Yves Piguet Synthèse multimodèle d'un régulateur polynomial robuste , 1997 .

[18]  Ruud J. P. Schrama Accurate identification for control: the necessity of an iterative scheme , 1992 .

[19]  P. Khargonekar,et al.  State-space solutions to standard H/sub 2/ and H/sub infinity / control problems , 1989 .

[20]  D. Titterington Estimation of Correlation Coefficients by Ellipsoidal Trimming , 1978 .

[21]  I. D. Landau,et al.  Competition, Interaction and Control , 1998 .

[22]  Paul M. J. Van den Hof,et al.  Identification and control - Closed-loop issues , 1995, Autom..

[23]  Robert L. Kosut System Identification for Robust Control Design. , 1996 .

[24]  P. Khargonekar,et al.  State-space solutions to standard H2 and H∞ control problems , 1988, 1988 American Control Conference.

[25]  E. Walter,et al.  Minimal volume ellipsoids , 1994 .

[26]  Stephen P. Boyd,et al.  Robust control design for ellipsoidal plant set , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[27]  Yeung Yam,et al.  A criterion for joint optimization of identification and robust control , 1992 .

[28]  Shankar P. Bhattacharyya,et al.  Robust Stabilization Against Structured Perturbations , 1987 .