OWA Operator‐Based Hybrid Framework for Outlier Reduction in Web Mining

Web mining is the process of extracting useful information from Web resources. Handling outliers is one of the primary challenges of present Web mining techniques. The complex nature of the Web, by virtue of both data and users, makes it very difficult to mine the information and convert to knowledge base with little outlier values. In this paper, a framework for reducing outliers in regression analysis with the help of ordered weighted operators (OWA) as a multicriteria decision‐making problem is being formulated. First, a regression problem with a real‐time Web data set will be formulated followed by solving the same with the help of a variant of OWA operators. Results, thus obtained are able to prove that outliers can be reduced significantly with the help of proposed approach.

[1]  Hendrik Blockeel,et al.  Web mining research: a survey , 2000, SKDD.

[2]  Zeshui Xu,et al.  An overview of methods for determining OWA weights , 2005, Int. J. Intell. Syst..

[3]  Zeshui Xu,et al.  Alternative form of Dempster's rule for binary variables: Research Articles , 2005 .

[4]  Vicenç Torra,et al.  OWA operators in data modeling and reidentification , 2004, IEEE Transactions on Fuzzy Systems.

[5]  Huayou Chen,et al.  Generalized ordered weighted logarithm aggregation operators and their applications to group decision making , 2010, Int. J. Intell. Syst..

[6]  Christer Carlsson,et al.  Fuzzy multiple criteria decision making: Recent developments , 1996, Fuzzy Sets Syst..

[7]  Petra Perner,et al.  Data Mining - Concepts and Techniques , 2002, Künstliche Intell..

[8]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decisionmaking , 1988, IEEE Trans. Syst. Man Cybern..

[9]  C. Carlsson,et al.  OWA operators for doctoral student selection problem , 1997 .

[10]  Patrick T. Hester,et al.  An Analysis of Multi-Criteria Decision Making Methods , 2013 .

[11]  J. Kyburg Higher order probability and intervals , 1988 .

[12]  Dimitar Filev,et al.  On the issue of obtaining OWA operator weights , 1998, Fuzzy Sets Syst..

[13]  Shruti Kohli,et al.  Fuzzy information retrieval in WWW: a survey , 2014, Int. J. Adv. Intell. Paradigms.

[14]  Yi Peng,et al.  FAMCDM: A fusion approach of MCDM methods to rank multiclass classification algorithms , 2011 .

[15]  Ronald R. Yager,et al.  Generalized OWA Aggregation Operators , 2004, Fuzzy Optim. Decis. Mak..

[16]  Jean-Luc Marichal,et al.  Behavioral analysis of aggregation in multicriteria decision aid , 2000 .

[17]  Byeong Seok Ahn Some remarks on the LSOWA approach for obtaining OWA operator weights , 2009, Int. J. Intell. Syst..

[18]  Shruti Kohli,et al.  A Survey on Web Information Retrieval Inside Fuzzy Framework , 2013, SocProS.

[19]  Barbara Pfeffer,et al.  Smoothing Forecasting And Prediction Of Discrete Time Series , 2016 .

[20]  Ching-Lai Hwang,et al.  Multiple attribute decision making : an introduction , 1995 .

[21]  Z. S. Xu,et al.  The ordered weighted geometric averaging operators , 2002, Int. J. Intell. Syst..

[22]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[23]  Lotfi A. Zadeh,et al.  Outline of a New Approach to the Analysis of Complex Systems and Decision Processes , 1973, IEEE Trans. Syst. Man Cybern..

[24]  Oren Etzioni,et al.  The World-Wide Web: quagmire or gold mine? , 1996, CACM.

[25]  Shruti Kohli,et al.  An Analytical Study of Ordered Weighted Geometric Averaging Operator on Web Data Set as a MCDM Problem , 2014, SocProS.

[26]  Jyrki Wallenius,et al.  The process of multiattribute decision making: A case study of selecting applicants for a Ph.D. program , 1994 .

[27]  Jian-Bo Yang,et al.  Multiple Attribute Decision Making , 1998 .

[28]  Mark Levene,et al.  Data Mining of User Navigation Patterns , 1999, WEBKDD.

[29]  Ali Emrouznejad,et al.  Ordered Weighted Averaging Operators 1988–2014: A Citation‐Based Literature Survey , 2014, Int. J. Intell. Syst..

[30]  Babak Daneshvar Rouyendegh,et al.  Curriculum Change Parameters Determined by Multi Criteria Decision Making (MCDM) , 2014 .

[31]  Didier Dubois,et al.  Refinements of the maximin approach to decision-making in a fuzzy environment , 1996, Fuzzy Sets Syst..

[32]  Hans-Jürgen Zimmermann,et al.  Fuzzy Set Theory - and Its Applications , 1985 .

[33]  Janusz Kacprzyk,et al.  Computing with words in intelligent database querying: standalone and Internet-based applications , 2001, Inf. Sci..

[34]  菅野 道夫,et al.  Theory of fuzzy integrals and its applications , 1975 .

[35]  Zeshui Xu,et al.  Information Technology and Quantitative Management ( ITQM 2013 ) Prioritized Multi-Criteria Decision Making Based on the Idea of PROMETHEE , 2013 .

[36]  Ronald R. Yager,et al.  Full reinforcement operators in aggregation techniques , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[37]  Jean-Luc Marichal,et al.  Aggregation operators for multicriteria decision aid , 1998 .

[38]  Jaideep Srivastava,et al.  Web mining: information and pattern discovery on the World Wide Web , 1997, Proceedings Ninth IEEE International Conference on Tools with Artificial Intelligence.

[39]  Gloria Bordogna,et al.  A linguistic modeling of consensus in group decision making based on OWA operators , 1997, IEEE Trans. Syst. Man Cybern. Part A.

[40]  B. Ahn Some remarks on the LSOWA approach for obtaining OWA operator weights , 2009 .

[41]  John C. Platt,et al.  Fast training of support vector machines using sequential minimal optimization, advances in kernel methods , 1999 .

[42]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decision-making , 1988 .

[43]  Sourav S. Bhowmick,et al.  Research Issues in Web Data Mining , 1999, DaWaK.

[44]  Lazim Abdullah,et al.  Fuzzy Multi Criteria Decision Making and its Applications: A Brief Review of Category , 2013 .

[45]  Vladik Kreinovich,et al.  Decision making under interval probabilities , 1999, Int. J. Approx. Reason..

[46]  Mark P. Wachowiak,et al.  Aggregation operators for selection problems , 2002, Fuzzy Sets Syst..