Perturbation technique and method of fundamental solution to solve nonlinear Poisson problems

We show in this work that the Asymptotic Numerical Method (ANM) combined with the Method of Fundamental Solution (MFS) can be a robust algorithm to solve the nonlinear Poisson problem. The ANM transforms the nonlinear problem into a sequence of linear ones which can be solved by MFS. This last method consists of approximating the solution of the linear Poisson problem by a linear combination of fundamental solutions. Some examples are presented to show the efficiency of the proposed method.

[1]  Q. Qin,et al.  A meshless method for generalized linear or nonlinear Poisson-type problems , 2006 .

[2]  Bangti Jin,et al.  A truly boundary-only meshfree method for inhomogeneous problems based on recursive composite multiple reciprocity technique , 2010 .

[3]  Marc Medale,et al.  A parallel computer implementation of the Asymptotic Numerical Method to study thermal convection instabilities , 2009, J. Comput. Phys..

[4]  Palghat A. Ramachandran,et al.  A Particular Solution Trefftz Method for Non-linear Poisson Problems in Heat and Mass Transfer , 1999 .

[5]  Xiaolin Li,et al.  The method of fundamental solutions for nonlinear elliptic problems , 2009 .

[6]  C. S. Chen,et al.  An Efficient Mesh-Free Method for Nonlinear Reaction-Diffusion Equations , 2001 .

[7]  B. Cochelin,et al.  A critical review of asymptotic numerical methods , 1998 .

[8]  Numerical computations for singular semilinear elliptic boundary value problems , 2002 .

[9]  S. Mukherjee,et al.  THE BOUNDARY NODE METHOD FOR POTENTIAL PROBLEMS , 1997 .

[10]  Ching-Shyang Chen,et al.  Evaluation of thin plate spline based particular solutions for Helmholtz-type operators for the DRM , 1998 .

[11]  W. Chen,et al.  A meshless, integration-free, and boundary-only RBF technique , 2002, ArXiv.

[12]  K. H. Chen,et al.  The Boundary Collocation Method with Meshless Concept for Acoustic Eigenanalysis of Two-Dimensional Cavities Using Radial Basis Function , 2002 .

[13]  Alex H. Barbat,et al.  Monte Carlo techniques in computational stochastic mechanics , 1998 .

[14]  Michel Potier-Ferry,et al.  Méthode asymptotique numérique , 2008 .

[15]  Božidar Šarler Towards a mesh-free computation of transport phenomena , 2002 .

[16]  Hamid Zahrouni,et al.  Asymptotic numerical methods for unilateral contact , 2006 .

[17]  M. Fallahi,et al.  A quasi-linear technique applied to the method of fundamental solution , 2010 .

[18]  M. Golberg,et al.  Improved multiquadric approximation for partial differential equations , 1996 .

[19]  Graeme Fairweather,et al.  The method of fundamental solutions for scattering and radiation problems , 2003 .

[20]  J. Cadou,et al.  High‐order predictor–corrector algorithms , 2002 .

[21]  Michel Potier-Ferry,et al.  A New method to compute perturbed bifurcations: Application to the buckling of imperfect elastic structures , 1990 .

[22]  Hamid Zahrouni,et al.  Asymptotic numerical method for problems coupling several nonlinearities , 2002 .

[23]  Hamid Zahrouni,et al.  Computing finite rotations of shells by an asymptotic-numerical method , 1999 .

[24]  H. Zahrouni,et al.  High-order prediction-correction algorithms for unilateral contact problems , 2004 .

[25]  Michael A. Golberg,et al.  The method of fundamental solutions for Poisson's equation , 1995 .

[26]  Palghat A. Ramachandran,et al.  Osculatory interpolation in the method of fundamental solution for nonlinear Poisson problems , 2001 .

[27]  V. D. Kupradze,et al.  The method of functional equations for the approximate solution of certain boundary value problems , 1964 .

[28]  Wen Chen,et al.  Winkler plate bending problems by a truly boundary-only boundary particle method , 2009 .

[29]  J. Bonet,et al.  Variational and momentum preservation aspects of Smooth Particle Hydrodynamic formulations , 1999 .

[30]  Hamid Zahrouni,et al.  Bifurcation points and bifurcated branches by an asymptotic numerical method and Padé approximants , 2004 .

[31]  Bruno Cochelin,et al.  The asymptotic-numerical method: an efficient perturbation technique for nonlinear structural mechanics , 1994 .

[32]  Ching-Shyang Chen,et al.  The method of fundamental solutions for non-linear thermal explosions , 1995 .

[33]  M. Potier-Ferry,et al.  Résolution des équations de Navier-Stokes et Détection des bifurcations stationnaires par une Méthode Asymptotique-Numérique , 1996 .

[34]  Michel Potier-Ferry,et al.  A boundary meshless method with shape functions computed from the PDE , 2010 .

[35]  Gnana R. Kotamraju,et al.  Trefftz indirect method applied to nonlinear potential problems , 2000 .

[36]  Michel Potier-Ferry,et al.  A numerical continuation method based on Padé approximants , 2000 .

[37]  Hamid Zahrouni,et al.  Asymptotic-numerical method for buckling analysis of shell structures with large rotations , 2004 .