Using Tropopause Maps to Diagnose Midlatitude Weather Systems

The use of potential vorticity (PV) allows the efficient description of the dynamics of nearly balanced atmospheric flow phenomena, but the distribution of PV must be simply represented for ease in interpretation. Representations of PV on isentropic or isobaric surfaces can be cumbersome, as analyses of several surfaces spanning the troposphere must be constructed to fully apprehend the complete PV distribution. Following a brief review of the relationship between PV and nearly balanced flows, it is demonstrated that the tropospheric PV has a simple distribution, and as a consequence, an analysis of potential temperature along the dynamic tropopause (here defined as a surface of constant PV) allows for a simple representation of the upper-tropospheric and lower-stratospheric PV. The construction and interpretation of these tropopause maps, which may be termed ‘‘isertelic’’ analyses of potential temperature, are described. In addition, techniques to construct dynamical representations of the lower-tropospheric PV and near-surface potential temperature, which complement these isertelic analyses, are also suggested. Case studies are presented to illustrate the utility of these techniques in diagnosing phenomena such as cyclogenesis, tropopause folds, the formation of an upper trough, and the effects of latent heat release on the upper and lower troposphere.

[1]  K. Emanuel,et al.  Potential Vorticity Diagnostics of Cyclogenesis , 1991 .

[2]  L. Bosart,et al.  The Ohio Valley Wave-Merger Cyclogenesis Event of 25–26 January 1978. Part I: Multiscale Case Study , 1995 .

[3]  A. Krueger,et al.  The Arctic Tropopause Fold , 1987 .

[4]  P. Gent,et al.  Consistent balanced models in bounded and periodic domains , 1983 .

[5]  J. Lamarque,et al.  Cross-Tropopause Mass Exchange and Potential Vorticity Budget in a Simulated Tropopause Folding , 1994 .

[6]  W. Robinson On the structure of potential vorticity in baroclinic instability , 1989 .

[7]  Diabatic Modification of an Extratropical Marine Cyclone Warm Sector by Cold Underlying Water , 1990 .

[8]  L. Bosart,et al.  Appalachian Cold-Air Damming , 1988 .

[9]  Michael C. Morgan An observationally and dynamically determined basis state for the study of synoptic scale waves , 1994 .

[10]  K. Swanson,et al.  Surface quasi-geostrophic dynamics , 1995, Journal of Fluid Mechanics.

[11]  M. Shapiro Turbulent Mixing within Tropopause Folds as a Mechanism for the Exchange of Chemical Constituents between the Stratosphere and Troposphere , 1980 .

[12]  K. Emanuel,et al.  Interaction of a Baroclinic Vortex with Background Shear: Application to Hurricane Movement. , 1993 .

[13]  J. Kaurola,et al.  Decomposing the Atmospheric Flow Using Potential Vorticity Framework , 1991 .

[14]  L. Bosart,et al.  Large-Scale Antecedent Conditions Associated with the 12 14 March 1993 Cyclone (``Superstorm '93'') over Eastern North America , 1996 .

[15]  G. Platzman The Motion of Barotropic Disturbances in the Upper Troposphere , 1949 .

[16]  J. Nielsen‐Gammon Dynamical conceptual models of upper-level mobile trough formation: comparison and application , 1995 .

[17]  Christopher A. Davis,et al.  Piecewise potential vorticity inversion , 1992 .

[18]  C. W. Newton,et al.  Atmospheric circulation systems: their structure and physical interpretation , 1969 .

[19]  F. Bretherton Critical layer instability in baroclinic flows , 1966 .

[20]  R. Lindzen,et al.  A PV view of the zonal mean distribution of temperature and wind in the extratropical troposphere , 1994 .

[21]  B. Hoskins,et al.  Two paradigms of baroclinic‐wave life‐cycle behaviour , 1993 .

[22]  Steven E. Koch,et al.  An interactive Barnes objective map analysis scheme for use with satellite and conventional data , 1983 .

[23]  S. Petterssen,et al.  On the development of extratropical cyclones , 1971 .

[24]  C. Davis,et al.  The Balanced Dynamical Nature of a Rapidly Intensifying Oceanic Cyclone , 1996 .

[25]  M. Juckes Quasigeostrophic Dynamics of the Tropopause , 1994 .

[26]  R. Dole,et al.  The Dynamics of Large-Scale Cyclogenesis over the North Pacific Ocean , 1993 .

[27]  Raymond T. Pierrehumbert,et al.  Surface quasi-geostrophic dynamics , 1995, Journal of Fluid Mechanics.

[28]  Donald R. Johnson,et al.  Stratospheric–Tropospheric Mass Exchange during the Presidents' Day Storm , 1994 .

[29]  Ying-Hwa Kuo,et al.  The Integrated Effect of Condensation in Numerical Simulations of Extratropical Cyclogenesis , 1993 .

[30]  J. Bellamy Objective Calculations of Divergence, Vertical Velocity and Vorticity , 1949 .

[31]  L. Bosart,et al.  A Characteristic Life Cycle of Upper-Tropospheric Cyclogenetic Precursors during the Experiment on Rapidly Intensifying Cyclones over the Atlantic (ERICA) , 1997 .

[32]  R. J. Reed,et al.  The ERICA IOP 5 Storm. Part II: Sensitivity Tests and Further Diagnosis Based on Model Output , 1993 .

[33]  J. Fritsch,et al.  Convectively Driven Mesoscale Weather Systems Aloft. Part I: Observations , 1981 .

[34]  J. Nielsen‐Gammon,et al.  Piecewise Tendency Diagnosis of Dynamical Processes Governing the Development of an Upper-Tropospheric Mobile Trough , 1996 .

[35]  W. Robinson Analysis of LIMS Data by Potential vorticity Inversion , 1988 .

[36]  M. Shapiro,et al.  The life cycles of extratropical cyclones , 1999 .

[37]  M. Ambaum Isentropic Formation of the Tropopause , 1997 .

[38]  F. Sanders,et al.  Synoptic-Dynamic Climatology of the “Bomb” , 1980 .

[39]  M. Hoerling,et al.  Global objective tropopause analysis , 1991 .

[40]  W. P. Day CYCLONES AND ANTICYCLONES , 1921 .

[41]  Charles A. Doswell,et al.  On the Interpolation of a Vector Field , 1979 .

[42]  J. Charney,et al.  On the Stability of Internal Baroclinic Jets in a Rotating Atmosphere. , 1962 .

[43]  Chris Snyder,et al.  An Analysis of Frontogenesis in Numerical Simulations of Baroclinic Waves , 1994 .

[44]  L. Uccellini Processes Contributing to the Rapid Development of Extratropical Cyclones , 1990 .

[45]  E. Danielsen,et al.  Stratospheric‐tropospheric exchange at polar latitudes in summer , 1980 .

[46]  A. Joly,et al.  Frontal instability generated by tropospheric potential vorticity anomalies , 1990 .

[47]  C. Bishop,et al.  POTENTIAL VORTICITY AND THE ELECTROSTATICS ANALOGY - ERTEL-ROSSBY FORMULATION , 1995 .

[48]  B. Hoskins,et al.  The diagnosis of middle latitude synoptic development , 1980 .

[49]  M. Shapiro,et al.  A Review of the Structure and Dynamics of Upper-Level Frontal Zones , 1986 .

[50]  E. Danielsen,et al.  Stratospheric-Tropospheric Exchange Based on Radioactivity, Ozone and Potential Vorticity , 1968 .

[51]  E. T. Eady,et al.  Long Waves and Cyclone Waves , 1949 .

[52]  L. Bosart,et al.  Postlandfall Tropical Cyclone Reintensification in a Weakly Baroclinic Environment: A Case Study of Hurricane David (September 1979) , 1995 .

[53]  F. Defant,et al.  The Threefold Structure of the Atmosphere and the Characteristics of the Tropopause , 1957 .

[54]  B. Hoskins,et al.  A POTENTIAL VORTICITY PERSPECTIVE OF THE STORM OF 15–16 OCTOBER 1987 , 1988 .

[55]  J. G. Charney,et al.  THE DYNAMICS OF LONG WAVES IN A BAROCLINIC WESTERLY CURRENT , 1947 .

[56]  J. Fritsch,et al.  Convectively Driven Mesoscale Weather Systems Aloft. Part II: Numerical Simulations , 1981 .

[57]  D. O. Staley On the Mechanism of Mass and Radioactivity Transport from Stratosphere to Troposphere , 1962 .

[58]  L. Bosart,et al.  The Ohio Valley Wave-Merger Cyclogenesis Event of 25–26 January 1978. Part II: Diagnosis Using Quasigeostrophic Potential Vorticity Inversion , 1996 .

[59]  A. Thorpe Synoptic Scale Disturbances with Circular Symmetry , 1986 .

[60]  K. Emanuel Frontal Circulations in the Presence of Small Moist Symmetric Stability , 1985 .