Uniform Hölder-norm bounds for finite element approximations of second-order elliptic equations

We develop a discrete counterpart of the De Giorgi-Nash-Moser theory, which provides uniform Holder-norm bounds on continuous piecewise affine finite element approximations of second-order linear elliptic problems of the form $-\nabla \cdot(A\nabla u)=f-\nabla\cdot F$ with $A\in L^\infty(\Omega;\mathbb{R}^{n\times n})$ a uniformly elliptic matrix-valued function, $f\in L^{q}(\Omega)$, $F\in L^p(\Omega;\mathbb{R}^n)$, with $p > n$ and $q > n/2$, on $A$-nonobtuse shape-regular triangulations, which are not required to be quasi-uniform, of a bounded polyhedral Lipschitz domain $\Omega \subset \mathbb{R}^n$.

[1]  John W. Barrett,et al.  Finite element approximation of some degenerate monotone quasilinear elliptic systems , 1996 .

[2]  Frank Natterer,et al.  Über die punktweise Konvergenz Finiter Elemente , 1975 .

[3]  Wenbin Liu,et al.  Finite element error analysis of a quasi-Newtonian flow obeying the Carreau or power law , 1993 .

[4]  Georg Dolzmann Optimal convergence for the finite element method in Campanato spaces , 1999, Math. Comput..

[5]  John W. Barrett,et al.  Finite element approximation of the p-Laplacian , 1993 .

[6]  ROB STEVENSON,et al.  The completion of locally refined simplicial partitions created by bisection , 2008, Math. Comput..

[7]  L. Diening,et al.  Regularity for parabolic systems of Uhlenbeck type with Orlicz growth , 2016, Journal of Mathematical Analysis and Applications.

[8]  P. G. Ciarlet,et al.  Maximum principle and uniform convergence for the finite element method , 1973 .

[9]  L. R. Scott,et al.  Optimal ^{∞} estimates for the finite element method on irregular meshes , 1976 .

[10]  Vivette Girault,et al.  Finite elements approximation of second order linear elliptic equations in divergence form with right-hand side in L1 , 2006, Numerische Mathematik.

[11]  Lars Diening,et al.  Partial Regularity for Minimizers of Quasi-convex Functionals with General Growth , 2012, SIAM J. Math. Anal..

[12]  Jürgen Roßmann,et al.  Hölder estimates for Green’s functions on convex polyhedral domains and their applications to finite element methods , 2009, Numerische Mathematik.

[13]  Luis A. Caffarelli,et al.  Regularity results for discrete solutions of second order elliptic problems in the finite element method , 1986 .

[14]  Seungchan Ko,et al.  Finite element approximation of an incompressible chemically reacting non-Newtonian fluid , 2017, 1703.04766.

[15]  Rolf Rannacher,et al.  Some Optimal Error Estimates for Piecewise Linear Finite Element Approximations , 1982 .

[16]  E. DiBenedetto Degenerate Parabolic Equations , 1993 .

[17]  Lars B. Wahlbin,et al.  Best approximation property in the W1∞ norm for finite element methods on graded meshes , 2011, Math. Comput..

[18]  H. Helfrich Optimale lineare approximation beschr?nkter Mengen in normierten R?umen , 1971 .

[19]  R. Rannacher,et al.  Asymptotic error expansion and Richardson extranpolation for linear finite elements , 1986 .

[20]  A. H. Schatz,et al.  Interior maximum-norm estimates for finite element methods, part II , 1995 .