Categorical Models for Abadi-Plotkin ’ s Logic for Parametricity

We propose a new category-theoretic formulation of relational parametricity based on a logic for reasoning about parametricity given by Abadi and Plotkin (Plotkin and Abadi, 1993). The logic can be used to reason about parametric models, such that we may prove consequences of parametricity that to our knowledge have not been proved before for existing category-theoretic notions of relational parametricity. We provide examples of parametric models and we describe a way of constructing parametric models from given models of the second-order lambda calculus.

[1]  Ivar Rummelhoff,et al.  Polynat in PER models , 2004, Theor. Comput. Sci..

[2]  John C. Reynolds,et al.  Types, Abstraction and Parametric Polymorphism , 1983, IFIP Congress.

[3]  John C. Mitchell,et al.  Foundations for programming languages , 1996, Foundation of computing series.

[4]  Uday S. Reddy,et al.  Parametricity as a notion of uniformity in reflexive graphs , 2002 .

[5]  Andrew M. Pitts,et al.  Polymorphism is Set Theoretic, Constructively , 1987, Category Theory and Computer Science.

[6]  Joyce L. Vedral,et al.  Functional Programming Languages and Computer Architecture , 1989, Lecture Notes in Computer Science.

[7]  Uday S. Reddy,et al.  Parametric limits , 2004, LICS 2004.

[8]  John C. Reynolds,et al.  Types, Abstractions, and Parametric Polymorphism, Part 2 , 1991, MFPS.

[9]  Bart Jacobs,et al.  Categorical Logic and Type Theory , 2001, Studies in logic and the foundations of mathematics.

[10]  A. Pitt,et al.  Non trivial power types can't be subtypes of polymorphic types , 1989, [1989] Proceedings. Fourth Annual Symposium on Logic in Computer Science.

[11]  Martín Abadi,et al.  A Logic for Parametric Polymorphism , 1993, TLCA.

[12]  R. A. G. Seely,et al.  Categorical semantics for higher order polymorphic lambda calculus , 1987, Journal of Symbolic Logic.

[13]  Edmund Robinson,et al.  Reflexive graphs and parametric polymorphism , 1994, Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science.

[14]  J. Hyland,et al.  The Discrete Objects in the Effective Topos , 1990 .

[15]  Izumi Takeuti An Axiomatic System of Parametricity , 1998, Fundam. Informaticae.

[16]  Philip Wadler,et al.  The Girard-Reynolds isomorphism (second edition) , 2007, Theor. Comput. Sci..

[17]  John C. Reynolds,et al.  Polymorphism is not Set-Theoretic , 1984, Semantics of Data Types.

[18]  S. Lane Categories for the Working Mathematician , 1971 .

[19]  Ryu Hasegawa,et al.  Categorical data types in parametric polymorphism , 1994, Mathematical Structures in Computer Science.