Modeling membrane deformations and lipid demixing upon protein-membrane interaction: the BAR dimer adsorption.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  S. Chandrasekhar Stochastic problems in Physics and Astronomy , 1943 .

[3]  S. Lowen The Biophysical Journal , 1960, Nature.

[4]  Academician D. V. Skobel’tsyn Analysis of Experimental Results , 1969 .

[5]  W. Helfrich Elastic Properties of Lipid Bilayers: Theory and Possible Experiments , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.

[6]  David Feller,et al.  Basis Set Selection for Molecular Calculations , 1986 .

[7]  V A Parsegian,et al.  Thermal-mechanical fluctuations enhance repulsion between bimolecular layers. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Smith,et al.  Universality in interacting membranes: The effect of cosurfactants on the interfacial rigidity. , 1989, Physical review letters.

[9]  S. McLaughlin,et al.  The electrostatic properties of membranes. , 1989, Annual review of biophysics and biophysical chemistry.

[10]  Clayton J. Radke,et al.  Variational approach to the electrostatic free energy in charged colloidal suspensions: general theory for open systems , 1990 .

[11]  K. Sharp,et al.  Electrostatic interactions in macromolecules: theory and applications. , 1990, Annual review of biophysics and biophysical chemistry.

[12]  W. Helfrich,et al.  Theory of vesicle budding , 1990 .

[13]  M. Kozlov,et al.  Elastic moduli and neutral surface for strongly curved monolayers. Analysis of experimental results , 1991 .

[14]  M. Kozlov,et al.  Effects of a cosurfactant on the stretching and bending elasticities of a surfactant monolayer , 1992 .

[15]  V. Adrian Parsegian,et al.  Thermal-mechanical fluctuations of fluid membranes in confined geometries: The case of soft confinement , 1992 .

[16]  Linda Allison,et al.  Blood and guts , 1993, Nature.

[17]  David Andelman,et al.  Phase Transitions between Vesicles and Micelles Driven by Competing Curvatures , 1994 .

[18]  David Andelman,et al.  Electrostatic Properties of Membranes: The Poisson-Boltzmann Theory , 1995 .

[19]  B. Honig,et al.  Classical electrostatics in biology and chemistry. , 1995, Science.

[20]  R. Krishna,et al.  The Maxwell-Stefan approach to mass transfer , 1997 .

[21]  Reinhard Lipowsky,et al.  Structure and dynamics of membranes , 1995 .

[22]  J. Fournier,et al.  Nontopological saddle-splay and curvature instabilities from anisotropic membrane inclusions. , 1996, Physical review letters.

[23]  H. W. Veen,et al.  Handbook of Biological Physics , 1996 .

[24]  R. Rand,et al.  The influence of cholesterol on phospholipid membrane curvature and bending elasticity. , 1997, Biophysical journal.

[25]  H. Orland,et al.  Steric Effects in Electrolytes: A Modified Poisson-Boltzmann Equation , 1997, cond-mat/9803258.

[26]  Federico Fogolari,et al.  On the variational approach to Poisson–Boltzmann free energies , 1997 .

[27]  Horia I. Petrache,et al.  Interbilayer interactions from high-resolution x-ray scattering , 1998 .

[28]  W. Gelbart,et al.  Structure, stability, and thermodynamics of lamellar DNA-lipid complexes. , 1998, Biophysical journal.

[29]  R. J. Mashl,et al.  Spontaneous-curvature theory of clathrin-coated membranes. , 1998, Biophysical journal.

[30]  E. Lindahl,et al.  Mesoscopic undulations and thickness fluctuations in lipid bilayers from molecular dynamics simulations. , 2000, Biophysical journal.

[31]  D. Harries,et al.  Lipid demixing and protein-protein interactions in the adsorption of charged proteins on mixed membranes. , 2000, Biophysical journal.

[32]  Pavel Osten,et al.  PICK1 Targets Activated Protein Kinase Cα to AMPA Receptor Clusters in Spines of Hippocampal Neurons and Reduces Surface Levels of the AMPA-Type Glutamate Receptor Subunit 2 , 2001, The Journal of Neuroscience.

[33]  P. De Camilli,et al.  Generation of high curvature membranes mediated by direct endophilin bilayer interactions , 2001, The Journal of cell biology.

[34]  Nathan A. Baker,et al.  Electrostatics of nanosystems: Application to microtubules and the ribosome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Ian G. Mills,et al.  Curvature of clathrin-coated pits driven by epsin , 2002, Nature.

[36]  Diana Murray,et al.  Lateral Sequestration of Phosphatidylinositol 4,5-Bisphosphate by the Basic Effector Domain of Myristoylated Alanine-rich C Kinase Substrate Is Due to Nonspecific Electrostatic Interactions* , 2002, The Journal of Biological Chemistry.

[37]  Diana Murray,et al.  PIP(2) and proteins: interactions, organization, and information flow. , 2002, Annual review of biophysics and biomolecular structure.

[38]  B. Honig,et al.  The role of electrostatic and nonpolar interactions in the association of peripheral proteins with membranes , 2002 .

[39]  C. R. Benatti,et al.  Curvature and bending constants for phosphatidylserine-containing membranes. , 2003, Biophysical journal.

[40]  Thorsten Lang,et al.  Membrane fusion. , 2002, Current opinion in cell biology.

[41]  Yonathan Kozlovsky,et al.  Membrane fission: model for intermediate structures. , 2003, Biophysical journal.

[42]  M. Kozlov,et al.  Protein-lipid interplay in fusion and fission of biological membranes. , 2003, Annual review of biochemistry.

[43]  Daniel Harries,et al.  Curvature and Charge Modulations in Lamellar DNA-Lipid Complexes , 2003 .

[44]  Assaf Zemel,et al.  Perturbation of a lipid membrane by amphipathic peptides and its role in pore formation , 2005, European Biophysics Journal.

[45]  Yonathan Kozlovsky,et al.  Stalk phase formation: effects of dehydration and saddle splay modulus. , 2004, Biophysical journal.

[46]  M. Kozlov,et al.  The gaussian curvature elastic modulus of N-monomethylated dioleoylphosphatidylethanolamine: relevance to membrane fusion and lipid phase behavior. , 2004, Biophysical journal.

[47]  Nir Ben-Tal,et al.  Increased concentration of polyvalent phospholipids in the adsorption domain of a charged protein. , 2003, Biophysical journal.

[48]  D. Harries,et al.  Gibbs adsorption isotherm combined with Monte Carlo sampling to see action of cosolutes on protein folding , 2004, Proteins.

[49]  B. Peter,et al.  BAR Domains as Sensors of Membrane Curvature: The Amphiphysin BAR Structure , 2004, Science.

[50]  Diana Murray,et al.  A computational model for the electrostatic sequestration of PI(4,5)P2 by membrane-adsorbed basic peptides. , 2004, Biophysical journal.

[51]  Bianca Habermann,et al.  The BAR‐domain family of proteins: a case of bending and binding? , 2004, EMBO reports.

[52]  Wei Lu,et al.  PICK1 Interacts with ABP/GRIP to Regulate AMPA Receptor Trafficking , 2005, Neuron.

[53]  Harvey T. McMahon,et al.  Membrane curvature and mechanisms of dynamic cell membrane remodelling , 2005, Nature.

[54]  D. Murray,et al.  Plasma membrane phosphoinositide organization by protein electrostatics , 2005, Nature.

[55]  Randy Schekman,et al.  Sar1p N-Terminal Helix Initiates Membrane Curvature and Completes the Fission of a COPII Vesicle , 2005, Cell.

[56]  Horia I. Petrache,et al.  Alteration of lipid membrane rigidity by cholesterol and its metabolic precursors , 2005 .

[57]  H. McMahon,et al.  Bar Domains and Membrane Curvature: Bringing Your Curves to the Bar , 2022 .

[58]  Ralf Langen,et al.  Mechanism of endophilin N‐BAR domain‐mediated membrane curvature , 2006, The EMBO journal.

[59]  Michael M. Kozlov,et al.  How proteins produce cellular membrane curvature , 2006, Nature Reviews Molecular Cell Biology.

[60]  Irina Zaitseva,et al.  Membrane-bound basic peptides sequester multivalent (PIP2), but not monovalent (PS), acidic lipids. , 2006, Biophysical journal.

[61]  Gregory A. Voth,et al.  Direct observation of Bin/amphiphysin/Rvs (BAR) domain-induced membrane curvature by means of molecular dynamics simulations , 2006, Proceedings of the National Academy of Sciences.

[62]  Alan L. Munn,et al.  The BAR Domain Proteins: Molding Membranes in Fission, Fusion, and Phagy , 2006, Microbiology and Molecular Biology Reviews.

[63]  J. Andrade,et al.  A BAR Domain in the N Terminus of the Arf GAP ASAP1 Affects Membrane Structure and Trafficking of Epidermal Growth Factor Receptor , 2006, Current Biology.

[64]  Soichi Takeda,et al.  Endophilin BAR domain drives membrane curvature by two newly identified structure‐based mechanisms , 2006, The EMBO journal.

[65]  John C Dawson,et al.  Bar domain proteins: a role in tubulation, scission and actin assembly in clathrin-mediated endocytosis. , 2006, Trends in cell biology.

[66]  Jun Xia,et al.  Lipid Binding Regulates Synaptic Targeting of PICK1, AMPA Receptor Trafficking, and Synaptic Plasticity , 2006, The Journal of Neuroscience.

[67]  Pietro De Camilli,et al.  BAR, F-BAR (EFC) and ENTH/ANTH domains in the regulation of membrane-cytosol interfaces and membrane curvature. , 2006, Biochimica et biophysica acta.

[68]  D. Marsh,et al.  Elastic curvature constants of lipid monolayers and bilayers. , 2006, Chemistry and physics of lipids.

[69]  Sumio Sugano,et al.  Curved EFC/F-BAR-Domain Dimers Are Joined End to End into a Filament for Membrane Invagination in Endocytosis , 2007, Cell.

[70]  Entropy-driven softening of fluid lipid bilayers by alamethicin. , 2007 .

[71]  Gregory A Voth,et al.  Membrane remodeling from N-BAR domain interactions: insights from multi-scale simulation. , 2007, Biophysical journal.

[72]  Chloe M Funkhouser,et al.  Coupled composition-deformation phase-field method for multicomponent lipid membranes. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[73]  R. Podgornik,et al.  Entropy-driven softening of fluid lipid bilayers by alamethicin. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[74]  Gregory A Voth,et al.  Factors influencing local membrane curvature induction by N-BAR domains as revealed by molecular dynamics simulations. , 2008, Biophysical journal.

[75]  Manuel Prieto,et al.  Role of helix 0 of the N-BAR domain in membrane curvature generation. , 2008, Biophysical journal.

[76]  George Khelashvili,et al.  Protein Diffusion on Charged Membranes: A Dynamic Mean-Field Model Describes Time Evolution and Lipid Reorganization , 2007, Biophysical journal.

[77]  Harel Weinstein,et al.  Membrane Localization is Critical for Activation of the PICK1 BAR Domain , 2008, Traffic.

[78]  M. Kozlov,et al.  The hydrophobic insertion mechanism of membrane curvature generation by proteins. , 2008, Biophysical journal.

[79]  Klaus Schulten,et al.  Four-scale description of membrane sculpting by BAR domains. , 2008, Biophysical journal.

[80]  Adam Frost,et al.  Structural Basis of Membrane Invagination by F-BAR Domains , 2008, Cell.

[81]  P. Kinnunen,et al.  Molecular Mechanisms of Membrane Deformation by I-BAR Domain Proteins , 2009, Current Biology.