Towards animating ray-traced volume visualization

Ray-tracing volumetric data may take several minutes to compute a single image from a fixed viewpoint. We present techniques that generate approximate ray-traced volumetric images in less than one second per image, after a lengthy initialization process is performed. These approximate images are based on methods that interpolate data sampled at locations on a sphere.

[1]  T. A. Foley Interpolation of scattered data on a spherical domain , 1990 .

[2]  Robert E. Barnhill,et al.  Surfaces defined on surfaces , 1990, Comput. Aided Geom. Des..

[3]  Charles L. Lawson,et al.  $C^1$ surface interpolation for scattered data on a sphere , 1984 .

[4]  Crow,et al.  A Comparison of Antialiasing Techniques , 1981, IEEE Computer Graphics and Applications.

[5]  Craig Upson,et al.  V-buffer: visible volume rendering , 1988, SIGGRAPH.

[6]  Pat Hanrahan,et al.  Volume Rendering , 2020, Definitions.

[7]  Gregory M. Nielson,et al.  Interpolation over a sphere based upon a minimum norm network , 1987, Comput. Aided Geom. Des..

[8]  James T. Kajiya,et al.  Ray tracing volume densities , 1984, SIGGRAPH.

[9]  Helmut Pottmann,et al.  Modified multiquadric methods for scattered data interpolation over a sphere , 1990, Comput. Aided Geom. Des..

[10]  Marc Levoy,et al.  Display of surfaces from volume data , 1988, IEEE Computer Graphics and Applications.

[11]  Hans Hagen,et al.  Interpolation of scattered data on closed surfaces , 1990, Comput. Aided Geom. Des..

[12]  Robert J. Renka,et al.  Interpolation of data on the surface of a sphere , 1984, TOMS.

[13]  R. L. Hardy,et al.  Least squares prediction of gravity anomalies, geoidal undulations, and deflections of the vertical with multiquadric harmonic functions , 1975 .

[14]  Gregory M. Nielson,et al.  Visualizing functions over a sphere , 1990, IEEE Computer Graphics and Applications.

[15]  Paolo Sabella,et al.  A rendering algorithm for visualizing 3D scalar fields , 1988, SIGGRAPH.