Van der Waals enabled formation and integration of ultrathin high-κ dielectrics on 2D semiconductors

[1]  I. Verzhbitskiy,et al.  Dielectrics for Two-Dimensional Transition-Metal Dichalcogenide Applications. , 2023, ACS nano.

[2]  Handong Sun,et al.  Greatly Enhanced Resonant Exciton‐Trion Conversion in Electrically Modulated Atomically Thin WS2 at Room Temperature , 2023, Advanced materials.

[3]  N. Yang,et al.  High-κ perovskite membranes as insulators for two-dimensional transistors , 2022, Nature.

[4]  Peng Gao,et al.  Van der Waals integration of high-κ perovskite oxides and two-dimensional semiconductors , 2022, Nature Electronics.

[5]  M. Fuhrer,et al.  Influence of direct deposition of dielectric materials on the optical response of monolayer WS2 , 2021, Applied Physics Letters.

[6]  X. Duan,et al.  Promises and prospects of two-dimensional transistors , 2021, Nature.

[7]  N. Roxhed,et al.  Large-area integration of two-dimensional materials and their heterostructures by wafer bonding , 2021, Nature Communications.

[8]  M. Lanza,et al.  The performance limits of hexagonal boron nitride as an insulator for scaled CMOS devices based on two-dimensional materials , 2021, Nature Electronics.

[9]  Chunhua Zhou,et al.  Hexagonal metal oxide monolayers derived from the metal–gas interface , 2021, Nature Materials.

[10]  E. Pop,et al.  High Current Density in Monolayer MoS2 Doped by AlOx. , 2020, ACS nano.

[11]  Ho Won Jang,et al.  Tailored Graphene Micropatterns by Wafer‐Scale Direct Transfer for Flexible Chemical Sensor Platform , 2020, Advanced materials.

[12]  J. Teng,et al.  Exciton-Enabled Meta-Optics in Two-Dimensional Transition Metal Dichalcogenides. , 2020, Nano letters.

[13]  Woong Huh,et al.  Memristors Based on 2D Materials as an Artificial Synapse for Neuromorphic Electronics , 2020, Advanced materials.

[14]  M. Lanza,et al.  Insulators for 2D nanoelectronics: the gap to bridge , 2020, Nature Communications.

[15]  X. Duan,et al.  Doping-free complementary WSe2 circuit via van der Waals metal integration , 2020, Nature Communications.

[16]  J. Hone,et al.  Disassembling 2D van der Waals crystals into macroscopic monolayers and reassembling into artificial lattices , 2020, Science.

[17]  Hongjun Gao,et al.  Universal mechanical exfoliation of large-area 2D crystals , 2020, Nature Communications.

[18]  Chao Di,et al.  U1 snRNP regulates cancer cell migration and invasion in vitro , 2020, Nature Communications.

[19]  T. Taniguchi,et al.  Deep-learning-based image segmentation integrated with optical microscopy for automatically searching for two-dimensional materials , 2019, npj 2D Materials and Applications.

[20]  A. Franquet,et al.  Material-selective doping of 2D TMDC through AlxOy encapsulation. , 2019, ACS applied materials & interfaces.

[21]  D. Akinwande,et al.  Graphene and two-dimensional materials for silicon technology , 2019, Nature.

[22]  B. Gil,et al.  Photonics with hexagonal boron nitride , 2019, Nature Reviews Materials.

[23]  Jie Deng,et al.  Carrier control in 2D transition metal dichalcogenides with Al2O3 dielectric , 2019, Scientific Reports.

[24]  Kenji Watanabe,et al.  Transferred via contacts as a platform for ideal two-dimensional transistors , 2019, Nature Electronics.

[25]  R. Ruoff,et al.  Do-It-Yourself Transfer of Large-Area Graphene Using an Office Laminator and Water , 2019, Chemistry of Materials.

[26]  E. Yeatman,et al.  Spatially Precise Transfer of Patterned Monolayer WS2 and MoS2 with Features Larger than 104 μm2 Directly from Multilayer Sources , 2019, ACS Applied Electronic Materials.

[27]  Satoru Masubuchi,et al.  Classifying optical microscope images of exfoliated graphene flakes by data-driven machine learning , 2019, npj 2D Materials and Applications.

[28]  D. Muller,et al.  Mechanism of Gold-Assisted Exfoliation of Centimeter-Sized Transition-Metal Dichalcogenide Monolayers. , 2018, ACS nano.

[29]  Linfeng Sun,et al.  Asymmetric Schottky Contacts in Bilayer MoS2 Field Effect Transistors , 2018, 1808.02119.

[30]  Takashi Taniguchi,et al.  Autonomous robotic searching and assembly of two-dimensional crystals to build van der Waals superlattices , 2018, Nature Communications.

[31]  Guodong Liu,et al.  Wafer-Scale Growth and Transfer of Highly-Oriented Monolayer MoS2 Continuous Films. , 2017, ACS nano.

[32]  C. Hwang,et al.  Multi-layer WSe2 field effect transistor with improved carrier-injection contact by using oxygen plasma treatment , 2017 .

[33]  David A. Muller,et al.  Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures , 2017, Nature.

[34]  Moon J. Kim,et al.  Al2O3 on WSe2 by ozone based atomic layer deposition: Nucleation and interface study , 2017 .

[35]  M. Owen,et al.  Gate-Tunable Resonant Raman Spectroscopy of Bilayer MoS2. , 2017, Small.

[36]  B. Tay,et al.  High Mobility 2D Palladium Diselenide Field‐Effect Transistors with Tunable Ambipolar Characteristics , 2017, Advanced materials.

[37]  A. Bol,et al.  Atomic Layer Deposition for Graphene Device Integration , 2017 .

[38]  Kenji Watanabe,et al.  Direct exciton emission from atomically thin transition metal dichalcogenide heterostructures near the lifetime limit , 2017, Scientific Reports.

[39]  M. Verheijen,et al.  Uniform Atomic Layer Deposition of Al2O3 on Graphene by Reversible Hydrogen Plasma Functionalization , 2017, Chemistry of materials : a publication of the American Chemical Society.

[40]  C. Robert,et al.  Excitonic linewidth approaching the homogeneous limit in MoS2-based van der Waals heterostructures , 2017, 1702.00323.

[41]  Faisal Ahmed,et al.  Fermi Level Pinning at Electrical Metal Contacts of Monolayer Molybdenum Dichalcogenides. , 2017, ACS nano.

[42]  N. K. Shrestha,et al.  UV-enhanced atomic layer deposition of Al2O3 thin films at low temperature for gas-diffusion barriers , 2017 .

[43]  Hyoungsub Kim,et al.  Atomic layer deposition of Al2O3 on MoS2, WS2, WSe2, and h-BN: surface coverage and adsorption energy , 2017 .

[44]  Xiaodong Xu,et al.  Valleytronics in 2D materials , 2016 .

[45]  X. Duan,et al.  Van der Waals heterostructures and devices , 2016 .

[46]  Bjarke S. Jessen,et al.  The hot pick-up technique for batch assembly of van der Waals heterostructures , 2016, Nature communications.

[47]  P. Taheri,et al.  Recombination Kinetics and Effects of Superacid Treatment in Sulfur- and Selenium-Based Transition Metal Dichalcogenides. , 2016, Nano letters.

[48]  Kaustav Banerjee,et al.  Electrical contacts to two-dimensional semiconductors. , 2015, Nature materials.

[49]  C. Strunk,et al.  Identification of excitons, trions and biexcitons in single‐layer WS2 , 2015, 1507.01342.

[50]  Moon J. Kim,et al.  HfO2 on UV–O3 exposed transition metal dichalcogenides: interfacial reactions study , 2015 .

[51]  Shenghao Xu,et al.  Supplementary Information , 2014, States at War, Volume 3.

[52]  A. Bol,et al.  The use of atomic layer deposition in advanced nanopatterning. , 2014, Nanoscale.

[53]  R. Wallace,et al.  Atomic Layer Deposition of a High-k Dielectric on MoS2 Using Trimethylaluminum and Ozone , 2014, ACS applied materials & interfaces.

[54]  Vibhor Singh,et al.  Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping , 2013, 1311.4829.

[55]  Peng-Fei Wang,et al.  High-performance bilayer flexible resistive random access memory based on low-temperature thermal atomic layer deposition , 2013, Nanoscale Research Letters.

[56]  J. Appenzeller,et al.  High performance multilayer MoS2 transistors with scandium contacts. , 2013, Nano letters.

[57]  Wei Xu,et al.  Wafer-scale pattern transfer of metal nanostructures on polydimethylsiloxane (PDMS) substrates via holographic nanopatterns. , 2012, ACS applied materials & interfaces.

[58]  J. Kong,et al.  Integrated circuits based on bilayer MoS₂ transistors. , 2012, Nano letters.

[59]  Moon J. Kim,et al.  Atomic layer deposition of dielectrics on graphene using reversibly physisorbed ozone. , 2012, ACS nano.

[60]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[61]  L. Colombo,et al.  Dielectric thickness dependence of carrier mobility in graphene with HfO2 top dielectric , 2010, 1010.0913.

[62]  K. Novoselov,et al.  Hunting for monolayer boron nitride: optical and Raman signatures. , 2010, Small.

[63]  Moon J. Kim,et al.  Characteristics of high-k Al2O3 dielectric using ozone-based atomic layer deposition for dual-gated graphene devices , 2010 .

[64]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[65]  L. Vandersypen,et al.  Wedging transfer of nanostructures. , 2010, Nano letters.

[66]  S. Banerjee,et al.  Realization of a high mobility dual-gated graphene field-effect transistor with Al2O3 dielectric , 2009, 0901.2901.

[67]  Robert M. Wallace,et al.  Conformal Al2O3 dielectric layer deposited by atomic layer deposition for graphene-based nanoelectronics , 2008 .

[68]  Georg Kresse,et al.  Structure of the Ultrathin Aluminum Oxide Film on NiAl(110) , 2005, Science.

[69]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[70]  Saroj K. Nayak,et al.  Towards extending the applicability of density functional theory to weakly bound systems , 2001 .

[71]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[72]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[73]  S. Seal,et al.  Nature of the use of adventitious carbon as a binding energy standard , 1995 .

[74]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.