Discriminating between Glaucoma and Normal Eyes Using Optical Coherence Tomography and the ‘Random Forests’ Classifier
暂无分享,去创建一个
Ryo Asaoka | Makoto Araie | Hiroyo Hirasawa | Chihiro Mayama | Hiroshi Murata | Aiko Iwase | Hiroshi Murata | C. Mayama | R. Asaoka | A. Iwase | M. Araie | H. Hirasawa | Tatsuya Yoshida | Tatsuya Yoshida | Hiroyo Hirasawa
[1] J Katz,et al. Evaluation of nerve fiber layer assessment. , 1984, Archives of ophthalmology.
[2] H. Littmann. [Determination of the real size of an object on the fundus of the living eye]. , 1982, Klinische Monatsblatter fur Augenheilkunde.
[3] Mohak Shah,et al. Evaluating Learning Algorithms: A Classification Perspective , 2011 .
[4] G. Holló,et al. Diagnostic accuracy of nerve fibre layer, macular thickness and optic disc measurements made with the RTVue-100 optical coherence tomograph to detect glaucoma , 2011, Eye.
[5] H. Littmann. Zur Bestimmung der wahren Größe eines Objektes auf dem Hintergrund eines lebenden Auges , 1988 .
[6] C. Glymour,et al. Optical coherence tomography machine learning classifiers for glaucoma detection: a preliminary study. , 2005, Investigative ophthalmology & visual science.
[7] Kazunori Miyata,et al. Glaucoma-Induced Optic Disc Morphometric Changes and Glaucoma Diagnostic Ability of Heidelberg Retina Tomograph II in Highly Myopic Eyes , 2014, PloS one.
[8] H. Rao,et al. Retinal nerve fiber layer and macular inner retina measurements by spectral domain optical coherence tomograph in Indian eyes with early glaucoma , 2012, Eye.
[9] M. Segal,et al. Relating Amino Acid Sequence to Phenotype: Analysis of Peptide‐Binding Data , 2000, Biometrics.
[10] J. Hanley,et al. A method of comparing the areas under receiver operating characteristic curves derived from the same cases. , 1983, Radiology.
[11] Eun Suk Lee,et al. Comparing the ganglion cell complex and retinal nerve fibre layer measurements by Fourier domain OCT to detect glaucoma in high myopia , 2010, British Journal of Ophthalmology.
[12] Douglas R. Anderson. Automated Static Perimetry , 1992 .
[13] Roberto Cipolla,et al. Semantic texton forests for image categorization and segmentation , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.
[14] H. Littmann. [Determining the true size of an object on the fundus of the living eye]. , 1988, Klinische Monatsblatter fur Augenheilkunde.
[15] Robert N Weinreb,et al. Comparison of different spectral domain optical coherence tomography scanning areas for glaucoma diagnosis. , 2010, Ophthalmology.
[16] W. Youden,et al. Index for rating diagnostic tests , 1950, Cancer.
[17] Leo Breiman,et al. Random Forests , 2001, Machine Learning.
[18] D. Apple,et al. Congenital anomalies of the optic disc. , 1982, Survey of ophthalmology.
[19] A. Sommer,et al. The nerve fiber layer in the diagnosis of glaucoma. , 1977, Archives of ophthalmology.
[20] K. Lunetta,et al. Screening large-scale association study data: exploiting interactions using random forests , 2004, BMC Genetics.
[21] B. Bengtsson,et al. False-negative responses in glaucoma perimetry: indicators of patient performance or test reliability? , 2000, American journal of ophthalmology.
[22] A E Maumenee,et al. Optic disc parameters and onset of glaucomatous field loss. I. Methods and progressive changes in disc morphology. , 1979, Archives of ophthalmology.
[23] Achim Zeileis,et al. BMC Bioinformatics BioMed Central Methodology article Conditional variable importance for random forests , 2008 .
[24] D. R. Anderson,et al. The mode of progressive disc cupping in ocular hypertension and glaucoma. , 1980, Archives of ophthalmology.
[25] E. DeLong,et al. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. , 1988, Biometrics.
[26] A. Sommer,et al. An evaluation of optic disc and nerve fiber layer examinations in monitoring progression of early glaucoma damage. , 1992, Ophthalmology.
[27] Takuhei Shoji,et al. Impact of high myopia on the performance of SD-OCT parameters to detect glaucoma , 2012, Graefe's Archive for Clinical and Experimental Ophthalmology.
[28] Debin Zhao,et al. Building Emerging Pattern (EP) Random forest for recognition , 2010, 2010 IEEE International Conference on Image Processing.
[29] Tin Aung,et al. Classification algorithms enhance the discrimination of glaucoma from normal eyes using high-definition optical coherence tomography. , 2012, Investigative ophthalmology & visual science.
[30] Xavier Robin,et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves , 2011, BMC Bioinformatics.
[31] Nikunj C. Oza,et al. Online Ensemble Learning , 2000, AAAI/IAAI.
[32] Janez Demsar,et al. Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..
[33] M. T. Leite,et al. Spectral-domain optical coherence tomography for early glaucoma assessment: analysis of macular ganglion cell complex versus peripapillary retinal nerve fiber layer. , 2011, Canadian journal of ophthalmology. Journal canadien d'ophtalmologie.
[34] Alan L. Yuille,et al. Performance comparison of machine learning algorithms and number of independent components used in fMRI decoding of belief vs. disbelief , 2011, NeuroImage.
[35] M. Aickin,et al. Adjusting for multiple testing when reporting research results: the Bonferroni vs Holm methods. , 1996, American journal of public health.
[36] Sung Yong Kang,et al. Relationship between visual field sensitivity and macular ganglion cell complex thickness as measured by spectral-domain optical coherence tomography. , 2010, Investigative ophthalmology & visual science.
[37] M Araie,et al. Influence of myopic disc shape on the diagnostic precision of the Heidelberg Retina Tomograph. , 1999, Japanese journal of ophthalmology.
[38] W. Feuer,et al. Macular ganglion cell-inner plexiform layer: automated detection and thickness reproducibility with spectral domain-optical coherence tomography in glaucoma. , 2011, Investigative ophthalmology & visual science.
[39] S. Holm. A Simple Sequentially Rejective Multiple Test Procedure , 1979 .
[40] Ramón Díaz-Uriarte,et al. Gene selection and classification of microarray data using random forest , 2006, BMC Bioinformatics.
[41] Eun Suk Lee,et al. Structure-function relationship and diagnostic value of macular ganglion cell complex measurement using Fourier-domain OCT in glaucoma. , 2010, Investigative ophthalmology & visual science.
[42] Jean-Claude Mwanza,et al. Combining spectral domain optical coherence tomography structural parameters for the diagnosis of glaucoma with early visual field loss. , 2013, Investigative ophthalmology & visual science.
[43] Petra Perner,et al. Data Mining - Concepts and Techniques , 2002, Künstliche Intell..
[44] Robert N Weinreb,et al. Comparison of different spectral domain OCT scanning protocols for diagnosing preperimetric glaucoma. , 2013, Investigative ophthalmology & visual science.
[45] Makoto Aihara,et al. Cross-sectional study: Does combining optical coherence tomography measurements using the ‘Random Forest’ decision tree classifier improve the prediction of the presence of perimetric deterioration in glaucoma suspects? , 2013, BMJ Open.
[46] H. Rao,et al. Effect of spectrum bias on the diagnostic accuracy of spectral-domain optical coherence tomography in glaucoma. , 2012, Investigative ophthalmology & visual science.
[47] A. Sommer,et al. Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. , 1991, Archives of ophthalmology.
[48] F. Green. Textbook of Glaucoma. , 1999 .
[49] Qi Yang,et al. Automated layer segmentation of macular OCT images using dual-scale gradient information. , 2010, Optics express.
[50] I. Schmidtmann,et al. Diagnostic ability of retinal ganglion cell complex, retinal nerve fiber layer, and optic nerve head measurements by Fourier-domain optical coherence tomography , 2011, Graefe's Archive for Clinical and Experimental Ophthalmology.
[51] T. Zimmerman,et al. Clinical Pathways in Glaucoma , 2001 .
[52] G. Wollstein,et al. Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography. , 2009, Ophthalmology.
[53] João Maroco,et al. Data mining methods in the prediction of Dementia: A real-data comparison of the accuracy, sensitivity and specificity of linear discriminant analysis, logistic regression, neural networks, support vector machines, classification trees and random forests , 2011, BMC Research Notes.