Discriminating between Glaucoma and Normal Eyes Using Optical Coherence Tomography and the ‘Random Forests’ Classifier

Purpose To diagnose glaucoma based on spectral domain optical coherence tomography (SD-OCT) measurements using the ‘Random Forests’ method. Methods SD-OCT was conducted in 126 eyes of 126 open angle glaucoma (OAG) patients and 84 eyes of 84 normal subjects. The Random Forests method was then applied to discriminate between glaucoma and normal eyes using 151 OCT parameters including thickness measurements of circumpapillary retinal nerve fiber layer (cpRNFL), the macular RNFL (mRNFL) and the ganglion cell layer-inner plexiform layer combined (GCIPL). The area under the receiver operating characteristic curve (AROC) was calculated using the Random Forests method adopting leave-one-out cross validation. For comparison, AROCs were calculated based on each one of the 151 OCT parameters. Results The AROC obtained with the Random Forests method was 98.5% [95% Confidence interval (CI): 97.1–99.9%], which was significantly larger than the AROCs derived from any single OCT parameter (maxima were: 92.8 [CI: 89.4–96.2] %, 94.3 [CI: 91.1–97.6] % and 91.8 [CI: 88.2–95.4] % for cpRNFL-, mRNFL- and GCIPL-related parameters, respectively; P<0.05, DeLong’s method with Holm’s correction for multiple comparisons). The partial AROC above specificity of 80%, for the Random Forests method was equal to 18.5 [CI: 16.8–19.6] %, which was also significantly larger than the AROCs of any single OCT parameter (P<0.05, Bootstrap method with Holm’s correction for multiple comparisons). Conclusions The Random Forests method, analyzing multiple SD-OCT parameters concurrently, significantly improves the diagnosis of glaucoma compared with using any single SD-OCT measurement.

[1]  J Katz,et al.  Evaluation of nerve fiber layer assessment. , 1984, Archives of ophthalmology.

[2]  H. Littmann [Determination of the real size of an object on the fundus of the living eye]. , 1982, Klinische Monatsblatter fur Augenheilkunde.

[3]  Mohak Shah,et al.  Evaluating Learning Algorithms: A Classification Perspective , 2011 .

[4]  G. Holló,et al.  Diagnostic accuracy of nerve fibre layer, macular thickness and optic disc measurements made with the RTVue-100 optical coherence tomograph to detect glaucoma , 2011, Eye.

[5]  H. Littmann Zur Bestimmung der wahren Größe eines Objektes auf dem Hintergrund eines lebenden Auges , 1988 .

[6]  C. Glymour,et al.  Optical coherence tomography machine learning classifiers for glaucoma detection: a preliminary study. , 2005, Investigative ophthalmology & visual science.

[7]  Kazunori Miyata,et al.  Glaucoma-Induced Optic Disc Morphometric Changes and Glaucoma Diagnostic Ability of Heidelberg Retina Tomograph II in Highly Myopic Eyes , 2014, PloS one.

[8]  H. Rao,et al.  Retinal nerve fiber layer and macular inner retina measurements by spectral domain optical coherence tomograph in Indian eyes with early glaucoma , 2012, Eye.

[9]  M. Segal,et al.  Relating Amino Acid Sequence to Phenotype: Analysis of Peptide‐Binding Data , 2000, Biometrics.

[10]  J. Hanley,et al.  A method of comparing the areas under receiver operating characteristic curves derived from the same cases. , 1983, Radiology.

[11]  Eun Suk Lee,et al.  Comparing the ganglion cell complex and retinal nerve fibre layer measurements by Fourier domain OCT to detect glaucoma in high myopia , 2010, British Journal of Ophthalmology.

[12]  Douglas R. Anderson Automated Static Perimetry , 1992 .

[13]  Roberto Cipolla,et al.  Semantic texton forests for image categorization and segmentation , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[14]  H. Littmann [Determining the true size of an object on the fundus of the living eye]. , 1988, Klinische Monatsblatter fur Augenheilkunde.

[15]  Robert N Weinreb,et al.  Comparison of different spectral domain optical coherence tomography scanning areas for glaucoma diagnosis. , 2010, Ophthalmology.

[16]  W. Youden,et al.  Index for rating diagnostic tests , 1950, Cancer.

[17]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[18]  D. Apple,et al.  Congenital anomalies of the optic disc. , 1982, Survey of ophthalmology.

[19]  A. Sommer,et al.  The nerve fiber layer in the diagnosis of glaucoma. , 1977, Archives of ophthalmology.

[20]  K. Lunetta,et al.  Screening large-scale association study data: exploiting interactions using random forests , 2004, BMC Genetics.

[21]  B. Bengtsson,et al.  False-negative responses in glaucoma perimetry: indicators of patient performance or test reliability? , 2000, American journal of ophthalmology.

[22]  A E Maumenee,et al.  Optic disc parameters and onset of glaucomatous field loss. I. Methods and progressive changes in disc morphology. , 1979, Archives of ophthalmology.

[23]  Achim Zeileis,et al.  BMC Bioinformatics BioMed Central Methodology article Conditional variable importance for random forests , 2008 .

[24]  D. R. Anderson,et al.  The mode of progressive disc cupping in ocular hypertension and glaucoma. , 1980, Archives of ophthalmology.

[25]  E. DeLong,et al.  Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. , 1988, Biometrics.

[26]  A. Sommer,et al.  An evaluation of optic disc and nerve fiber layer examinations in monitoring progression of early glaucoma damage. , 1992, Ophthalmology.

[27]  Takuhei Shoji,et al.  Impact of high myopia on the performance of SD-OCT parameters to detect glaucoma , 2012, Graefe's Archive for Clinical and Experimental Ophthalmology.

[28]  Debin Zhao,et al.  Building Emerging Pattern (EP) Random forest for recognition , 2010, 2010 IEEE International Conference on Image Processing.

[29]  Tin Aung,et al.  Classification algorithms enhance the discrimination of glaucoma from normal eyes using high-definition optical coherence tomography. , 2012, Investigative ophthalmology & visual science.

[30]  Xavier Robin,et al.  pROC: an open-source package for R and S+ to analyze and compare ROC curves , 2011, BMC Bioinformatics.

[31]  Nikunj C. Oza,et al.  Online Ensemble Learning , 2000, AAAI/IAAI.

[32]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[33]  M. T. Leite,et al.  Spectral-domain optical coherence tomography for early glaucoma assessment: analysis of macular ganglion cell complex versus peripapillary retinal nerve fiber layer. , 2011, Canadian journal of ophthalmology. Journal canadien d'ophtalmologie.

[34]  Alan L. Yuille,et al.  Performance comparison of machine learning algorithms and number of independent components used in fMRI decoding of belief vs. disbelief , 2011, NeuroImage.

[35]  M. Aickin,et al.  Adjusting for multiple testing when reporting research results: the Bonferroni vs Holm methods. , 1996, American journal of public health.

[36]  Sung Yong Kang,et al.  Relationship between visual field sensitivity and macular ganglion cell complex thickness as measured by spectral-domain optical coherence tomography. , 2010, Investigative ophthalmology & visual science.

[37]  M Araie,et al.  Influence of myopic disc shape on the diagnostic precision of the Heidelberg Retina Tomograph. , 1999, Japanese journal of ophthalmology.

[38]  W. Feuer,et al.  Macular ganglion cell-inner plexiform layer: automated detection and thickness reproducibility with spectral domain-optical coherence tomography in glaucoma. , 2011, Investigative ophthalmology & visual science.

[39]  S. Holm A Simple Sequentially Rejective Multiple Test Procedure , 1979 .

[40]  Ramón Díaz-Uriarte,et al.  Gene selection and classification of microarray data using random forest , 2006, BMC Bioinformatics.

[41]  Eun Suk Lee,et al.  Structure-function relationship and diagnostic value of macular ganglion cell complex measurement using Fourier-domain OCT in glaucoma. , 2010, Investigative ophthalmology & visual science.

[42]  Jean-Claude Mwanza,et al.  Combining spectral domain optical coherence tomography structural parameters for the diagnosis of glaucoma with early visual field loss. , 2013, Investigative ophthalmology & visual science.

[43]  Petra Perner,et al.  Data Mining - Concepts and Techniques , 2002, Künstliche Intell..

[44]  Robert N Weinreb,et al.  Comparison of different spectral domain OCT scanning protocols for diagnosing preperimetric glaucoma. , 2013, Investigative ophthalmology & visual science.

[45]  Makoto Aihara,et al.  Cross-sectional study: Does combining optical coherence tomography measurements using the ‘Random Forest’ decision tree classifier improve the prediction of the presence of perimetric deterioration in glaucoma suspects? , 2013, BMJ Open.

[46]  H. Rao,et al.  Effect of spectrum bias on the diagnostic accuracy of spectral-domain optical coherence tomography in glaucoma. , 2012, Investigative ophthalmology & visual science.

[47]  A. Sommer,et al.  Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. , 1991, Archives of ophthalmology.

[48]  F. Green Textbook of Glaucoma. , 1999 .

[49]  Qi Yang,et al.  Automated layer segmentation of macular OCT images using dual-scale gradient information. , 2010, Optics express.

[50]  I. Schmidtmann,et al.  Diagnostic ability of retinal ganglion cell complex, retinal nerve fiber layer, and optic nerve head measurements by Fourier-domain optical coherence tomography , 2011, Graefe's Archive for Clinical and Experimental Ophthalmology.

[51]  T. Zimmerman,et al.  Clinical Pathways in Glaucoma , 2001 .

[52]  G. Wollstein,et al.  Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography. , 2009, Ophthalmology.

[53]  João Maroco,et al.  Data mining methods in the prediction of Dementia: A real-data comparison of the accuracy, sensitivity and specificity of linear discriminant analysis, logistic regression, neural networks, support vector machines, classification trees and random forests , 2011, BMC Research Notes.