The Renaissance of Bacillosamine and Its Derivatives: Pathway Characterization and Implications in Pathogenicity

Prokaryote-specific sugars, including N,N′-diacetylbacillosamine (diNAcBac) and pseudaminic acid, have experienced a renaissance in the past decade because of their discovery in glycans related to microbial pathogenicity. DiNAcBac is found at the reducing end of oligosaccharides of N- and O-linked bacterial protein glycosylation pathways of Gram-negative pathogens, including Campylobacter jejuni and Neisseria gonorrhoeae. Further derivatization of diNAcBac results in the nonulosonic acid known as legionaminic acid, which was first characterized in the O-antigen of the lipopolysaccharide (LPS) in Legionella pneumophila. Pseudaminic acid, an isomer of legionaminic acid, is also important in pathogenic bacteria such as Helicobacter pylori because of its occurrence in O-linked glycosylation of flagellin proteins, which plays an important role in flagellar assembly and motility. Here, we present recent advances in the characterization of the biosynthetic pathways leading to these highly modified sugars and investigation of the roles that each plays in bacterial fitness and pathogenicity.

[1]  B. Imperiali,et al.  Biochemical Analysis and Structure Determination of Bacterial Acetyltransferases Responsible for the Biosynthesis of UDP-N,N′-Diacetylbacillosamine* , 2013, The Journal of Biological Chemistry.

[2]  E. Vinogradov,et al.  Chemical structure of the carbohydrate backbone of the lipopolysaccharide from Piscirickettsia salmonis. , 2013, Carbohydrate research.

[3]  J. Eichler,et al.  Analysis of putative nonulosonic acid biosynthesis pathways in Archaea reveals a complex evolutionary history. , 2013, FEMS microbiology letters.

[4]  B. Imperiali,et al.  Biosynthesis of UDP-N,N'-diacetylbacillosamine in Acinetobacter baumannii: Biochemical characterization and correlation to existing pathways. , 2013, Archives of biochemistry and biophysics.

[5]  B. Liu,et al.  Diversity in the Major Polysaccharide Antigen of Acinetobacter Baumannii Assessed by DNA Sequencing, and Development of a Molecular Serotyping Scheme , 2013, PloS one.

[6]  S. Longwell,et al.  Targeted Identification of Glycosylated Proteins in the Gastric Pathogen Helicobacter pylori (Hp) , 2013, Molecular & Cellular Proteomics.

[7]  B. Schulz,et al.  Dual Pili Post-translational Modifications Synergize to Mediate Meningococcal Adherence to Platelet Activating Factor Receptor on Human Airway Cells , 2013, PLoS pathogens.

[8]  H. Nothaft,et al.  N-Glycosylation of Campylobacter jejuni Surface Proteins Promotes Bacterial Fitness , 2013, Infection and Immunity.

[9]  H. Nothaft,et al.  Bacterial Protein N-Glycosylation: New Perspectives and Applications* , 2013, The Journal of Biological Chemistry.

[10]  Jan Haug Anonsen,et al.  An extended spectrum of target proteins and modification sites in the general O-linked protein glycosylation system in Neisseria gonorrhoeae. , 2012, Journal of proteome research.

[11]  E. Manson,et al.  Campylobacter jejuni Outer Membrane Vesicles Play an Important Role in Bacterial Interactions with Human Intestinal Epithelial Cells , 2012, Infection and Immunity.

[12]  M. Koomey,et al.  Hypomorphic Glycosyltransferase Alleles and Recoding at Contingency Loci Influence Glycan Microheterogeneity in the Protein Glycosylation System of Neisseria Species , 2012, Journal of bacteriology.

[13]  J. Parker,et al.  Identification of a putative glycosyltransferase responsible for the transfer of pseudaminic acid onto the polar flagellin of Aeromonas caviae Sch3N , 2012, MicrobiologyOpen.

[14]  E. Ruby,et al.  O-antigen and Core Carbohydrate of Vibrio fischeri Lipopolysaccharide , 2012, The Journal of Biological Chemistry.

[15]  E. Vinogradov,et al.  Characterization of the lipopolysaccharide O-antigen of Cronobacter turicensis HPB3287 as a polysaccharide containing a 5,7-diacetamido-3,5,7,9-tetradeoxy-D-glycero-D-galacto-non-2-ulosonic acid (legionaminic acid) residue. , 2011, Carbohydrate research.

[16]  M. Wilkins,et al.  Comparative analyses of Campylobacter concisusstrains reveal the genome of the reference strain BAA-1457 is not representative of the species , 2011, Gut pathogens.

[17]  M. Apicella,et al.  Neisseria gonorrhoeae pilin glycan contributes to CR3 activation during challenge of primary cervical epithelial cells , 2011, Cellular microbiology.

[18]  Barbara Imperiali,et al.  The expanding horizons of asparagine-linked glycosylation. , 2011, Biochemistry.

[19]  B. Imperiali,et al.  Biochemical Characterization of the O-linked Glycosylation Pathway in Neisseria Gonorrhoeae Responsible for Biosynthesis of Protein Glycans Accessed Terms of Use Detailed Terms Biochemical Characterization of the O-linked Glycosylation Pathway in Neisseria Gonorrhoeae Responsible for Biosynthesis of , 2022 .

[20]  Yukishige Ito,et al.  Synthesis of pseudaminic acid, a unique nonulopyranoside derived from pathogenic bacteria through 6-deoxy-AltdiNAc , 2011 .

[21]  H. Cooper,et al.  Novel Glycosylation Sites Localized in Campylobacter jejuni Flagellin FlaA by Liquid Chromatography Electron Capture Dissociation Tandem Mass Spectrometry , 2010, Journal of proteome research.

[22]  H. Mollenkopf,et al.  Helicobacter pylori HP0518 affects flagellin glycosylation to alter bacterial motility , 2010, Molecular microbiology.

[23]  H. Nothaft,et al.  Protein glycosylation in bacteria: sweeter than ever , 2010, Nature Reviews Microbiology.

[24]  B. Imperiali,et al.  Structural analysis of WbpE from Pseudomonas aeruginosa PAO1: a nucleotide sugar aminotransferase involved in O-antigen assembly. , 2010, Biochemistry.

[25]  Wei Chen,et al.  Structural and genetic characterization of the O-antigen of Escherichia coli O161 containing a derivative of a higher acidic diamino sugar, legionaminic acid. , 2010, Carbohydrate research.

[26]  P. Hitchen,et al.  Modification of the Campylobacter jejuni flagellin glycan by the product of the Cj1295 homopolymeric-tract-containing gene , 2010, Microbiology.

[27]  Yvonne Kallberg,et al.  Classification of the short‐chain dehydrogenase/reductase superfamily using hidden Markov models , 2010, The FEBS journal.

[28]  M. Koomey,et al.  Genetic, Structural, and Antigenic Analyses of Glycan Diversity in the O-Linked Protein Glycosylation Systems of Human Neisseria Species , 2010, Journal of bacteriology.

[29]  Nichollas E. Scott,et al.  Simultaneous Glycan-Peptide Characterization Using Hydrophilic Interaction Chromatography and Parallel Fragmentation by CID, Higher Energy Collisional Dissociation, and Electron Transfer Dissociation MS Applied to the N-Linked Glycoproteome of Campylobacter jejuni* , 2010, Molecular & Cellular Proteomics.

[30]  F. Shanahan,et al.  Probiotic Colonization of the Adherent Mucus Layer of HT29MTXE12 Cells Attenuates Campylobacter jejuni Virulence Properties , 2010, Infection and Immunity.

[31]  N. Strynadka,et al.  Inhibition of Neisseria meningitidis sialic acid synthase by a tetrahedral intermediate analogue. , 2009, Biochemistry.

[32]  E. Andreishcheva,et al.  Functional Characterization of Flagellin Glycosylation in Campylobacter jejuni 81-176 , 2009, Journal of bacteriology.

[33]  Roland Schauer,et al.  Sialic acids as regulators of molecular and cellular interactions , 2009, Current Opinion in Structural Biology.

[34]  V. Nizet,et al.  Innovations in host and microbial sialic acid biosynthesis revealed by phylogenomic prediction of nonulosonic acid structure , 2009, Proceedings of the National Academy of Sciences.

[35]  J. Brisson,et al.  The CMP-legionaminic acid pathway in Campylobacter: biosynthesis involving novel GDP-linked precursors. , 2009, Glycobiology.

[36]  Allan Matte,et al.  Structural and Functional Analysis of Campylobacter jejuni PseG , 2009, The Journal of Biological Chemistry.

[37]  C. Creuzenet,et al.  Cj1123c (PglD), a multifaceted acetyltransferase from Campylobacter jejuni. , 2009, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[38]  J. Rabinowitz,et al.  Absolute Metabolite Concentrations and Implied Enzyme Active Site Occupancy in Escherichia coli , 2009, Nature chemical biology.

[39]  A. T. Carter,et al.  Independent evolution of neurotoxin and flagellar genetic loci in proteolytic Clostridium botulinum , 2009, BMC Genomics.

[40]  A. Schneider,et al.  Broad spectrum O-linked protein glycosylation in the human pathogen Neisseria gonorrhoeae , 2009, Proceedings of the National Academy of Sciences.

[41]  Qijing Zhang,et al.  Antibiotic resistance in Campylobacter: emergence, transmission and persistence. , 2009, Future microbiology.

[42]  M. Tanner,et al.  Mechanistic studies on PseB of pseudaminic acid biosynthesis: a UDP-N-acetylglucosamine 5-inverting 4,6-dehydratase. , 2008, Bioorganic chemistry.

[43]  B. Imperiali,et al.  Crystal Structure and Catalytic Mechanism of PglD from Campylobacter jejuni* , 2008, Journal of Biological Chemistry.

[44]  F. Haesebrouck,et al.  Colonization strategy of Campylobacter jejuni results in persistent infection of the chicken gut. , 2008, Veterinary microbiology.

[45]  S. Escaich Antivirulence as a new antibacterial approach for chemotherapy. , 2008, Current opinion in chemical biology.

[46]  D. Watson,et al.  Biosynthesis of CMP-N,N'-diacetyllegionaminic acid from UDP-N,N'-diacetylbacillosamine in Legionella pneumophila. , 2008, Biochemistry.

[47]  T. Sulea,et al.  Structure and active site residues of PglD, an N-acetyltransferase from the bacillosamine synthetic pathway required for N-glycan synthesis in Campylobacter jejuni. , 2008, Biochemistry.

[48]  D. McNally,et al.  CMP‐Pseudaminic Acid is a Natural Potent Inhibitor of PseB, the First Enzyme of the Pseudaminic Acid Pathway in Campylobacter jejuni and Helicobacter pylori , 2008, ChemMedChem.

[49]  N. Sharon Celebrating the golden anniversary of the discovery of bacillosamine, the diamino sugar of a Bacillus. , 2007, Glycobiology.

[50]  H. Holden,et al.  Molecular architecture of DesI: a key enzyme in the biosynthesis of desosamine. , 2007, Biochemistry.

[51]  D. McNally,et al.  Targeted Metabolomics Analysis of Campylobacter coli VC167 Reveals Legionaminic Acid Derivatives as Novel Flagellar Glycans* , 2007, Journal of Biological Chemistry.

[52]  B. Imperiali,et al.  In vitro biosynthesis of UDP-N,N'-diacetylbacillosamine by enzymes of the Campylobacter jejuni general protein glycosylation system. , 2006, Biochemistry.

[53]  Anne Dell,et al.  Neisseria gonorrhoeae Type IV Pili Undergo Multisite, Hierarchical Modifications with Phosphoethanolamine and Phosphocholine Requiring an Enzyme Structurally Related to Lipopolysaccharide Phosphoethanolamine Transferases* , 2006, Journal of Biological Chemistry.

[54]  C. Dozois,et al.  Cj1121c, a Novel UDP-4-keto-6-deoxy-GlcNAc C-4 Aminotransferase Essential for Protein Glycosylation and Virulence in Campylobacter jejuni* , 2006, Journal of Biological Chemistry.

[55]  R. Yu,et al.  Ganglioside Molecular Mimicry and Its Pathological Roles in Guillain-Barré Syndrome and Related Diseases , 2006, Infection and Immunity.

[56]  D. McNally,et al.  Elucidation of the CMP-pseudaminic acid pathway in Helicobacter pylori: synthesis from UDP-N-acetylglucosamine by a single enzymatic reaction. , 2006, Glycobiology.

[57]  G. Harauz,et al.  Structural Studies of FlaA1 from Helicobacter pylori Reveal the Mechanism for Inverting 4,6-Dehydratase Activity* , 2006, Journal of Biological Chemistry.

[58]  T. Sulea,et al.  Crystal Structure of TDP-Fucosamine Acetyltransferase (WecD) from Escherichia coli, an Enzyme Required for Enterobacterial Common Antigen Synthesis , 2006, Journal of bacteriology.

[59]  N. Yuki,et al.  Ganglioside mimicry as a cause of Guillain-Barré syndrome. , 2006, Current opinion in neurology.

[60]  F. Liu,et al.  PseG of Pseudaminic Acid Biosynthesis , 2006, Journal of Biological Chemistry.

[61]  D. McNally,et al.  Functional Characterization of the Flagellar Glycosylation Locus in Campylobacter jejuni 81–176 Using a Focused Metabolomics Approach* , 2006, Journal of Biological Chemistry.

[62]  C. Szymanski,et al.  Biosynthesis of the N-Linked Glycan in Campylobacter jejuni and Addition onto Protein through Block Transfer , 2006, Journal of bacteriology.

[63]  P. Thibault,et al.  Changes in flagellin glycosylation affect Campylobacter autoagglutination and virulence , 2006, Molecular microbiology.

[64]  J. Brisson,et al.  Structural and Functional Characterization of PseC, an Aminotransferase Involved in the Biosynthesis of Pseudaminic Acid, an Essential Flagellar Modification in Helicobacter pylori* , 2006, Journal of Biological Chemistry.

[65]  M. Parrilli,et al.  A Versatile Strategy for the Synthesis of N-Acetyl-bacillosamine-Containing Disaccharide Building Blocks Related to Bacterial O-Antigens , 2006 .

[66]  Avadhesha Surolia,et al.  N-linked oligosaccharides as outfitters for glycoprotein folding, form and function. , 2006, Trends in biochemical sciences.

[67]  D. McNally,et al.  Functional Characterization of Dehydratase/Aminotransferase Pairs from Helicobacter and Campylobacter , 2006, Journal of Biological Chemistry.

[68]  W. Wakarchuk,et al.  Identification and Characterization of NeuB3 from Campylobacter jejuni as a Pseudaminic Acid Synthase* , 2005, Journal of Biological Chemistry.

[69]  B. Imperiali,et al.  Investigating bacterial N-linked glycosylation: synthesis and glycosyl acceptor activity of the undecaprenyl pyrophosphate-linked bacillosamine. , 2005, Journal of the American Chemical Society.

[70]  N. Yuki,et al.  Ganglioside mimicry as a cause of Guillain–Barré syndrome , 2005, CNS & neurological disorders drug targets.

[71]  B. Laubert,et al.  Structural analysis of a set of proteins resulting from a bacterial genomics project , 2005, Proteins.

[72]  C. Creuzenet,et al.  Biochemical Characterization of the Campylobacter jejuni Cj1294, a Novel UDP-4-keto-6-deoxy-GlcNAc Aminotransferase That Generates UDP-4-amino-4,6-dideoxy-GalNAc* , 2005, Journal of Biological Chemistry.

[73]  N. Strynadka,et al.  Structural and Mechanistic Analysis of Sialic Acid Synthase NeuB from Neisseria meningitidis in Complex with Mn2+, Phosphoenolpyruvate, and N-Acetylmannosaminitol* , 2005, Journal of Biological Chemistry.

[74]  R. Hughes Campylobacter jejuni in Guillain-Barré syndrome , 2004, The Lancet Neurology.

[75]  A. S. Murkin,et al.  Identification and mechanism of a bacterial hydrolyzing UDP-N-acetylglucosamine 2-epimerase. , 2004, Biochemistry.

[76]  C. Szymanski,et al.  N-Linked Protein Glycosylation Is Required for Full Competence in Campylobacter jejuni 81-176 , 2004, Journal of bacteriology.

[77]  E. Vinogradov,et al.  Characterisation of the core part of the lipopolysaccharide O-antigen of Francisella novicida (U112). , 2004, Carbohydrate research.

[78]  John A. Tainer,et al.  Type IV pilus structure and bacterial pathogenicity , 2004, Nature Reviews Microbiology.

[79]  V. DiRita,et al.  Identification of Campylobacter jejuni genes involved in commensal colonization of the chick gastrointestinal tract , 2004, Molecular microbiology.

[80]  C. Creuzenet Characterization of CJ1293, a new UDP‐GlcNAc C6 dehydratase from Campylobacter jejuni1 , 2004, FEBS letters.

[81]  M. Schmidt,et al.  Sweet new world: glycoproteins in bacterial pathogens. , 2003, Trends in microbiology.

[82]  J. Kelly,et al.  Pseudaminic acid, the major modification on Campylobacter flagellin, is synthesized via the Cj1293 gene , 2003, Molecular microbiology.

[83]  M. Jennings,et al.  Genetic characterization of pilin glycosylation and phase variation in Neisseria meningitidis , 2003, Molecular microbiology.

[84]  P. Thibault,et al.  Structural, genetic and functional characterization of the flagellin glycosylation process in Helicobacter pylori , 2003, Molecular microbiology.

[85]  M. Kumar,et al.  Bacterial glycoproteins: Functions, biosynthesis and applications , 2003, Proteomics.

[86]  W. Reutter,et al.  Sialic acid biosynthesis: stereochemistry and mechanism of the reaction catalyzed by the mammalian UDP-N-acetylglucosamine 2-epimerase. , 2003, Journal of the American Chemical Society.

[87]  Erik Nordling,et al.  Short-chain dehydrogenases/reductases (SDR): the 2002 update. , 2003, Chemico-biological interactions.

[88]  C. Szymanski,et al.  Structure of the N-Linked Glycan Present on Multiple Glycoproteins in the Gram-negative Bacterium, Campylobacter jejuni * , 2002, The Journal of Biological Chemistry.

[89]  P. Thibault,et al.  Structural heterogeneity of carbohydrate modifications affects serospecificity of Campylobacter flagellins , 2002, Molecular microbiology.

[90]  Erik Nordling,et al.  Critical Residues for Structure and Catalysis in Short-chain Dehydrogenases/Reductases* , 2002, The Journal of Biological Chemistry.

[91]  Karen M. Ottemann,et al.  Helicobacter pylori Uses Motility for Initial Colonization and To Attain Robust Infection , 2002, Infection and Immunity.

[92]  C. Szymanski,et al.  Campylobacter Protein Glycosylation Affects Host Cell Interactions , 2002, Infection and Immunity.

[93]  R. Lanzetta,et al.  O-Specific chain structure from the lipopolysaccharide fraction of Pseudomonas reactans: a pathogen of the cultivated mushrooms. , 2002, Carbohydrate research.

[94]  J. Brisson,et al.  Identification of the Carbohydrate Moieties and Glycosylation Motifs in Campylobacter jejuni Flagellin* , 2001, The Journal of Biological Chemistry.

[95]  A. Moran,et al.  Molecular mimicry in Campylobacter jejuni and Helicobacter pylori lipopolysaccharides: contribution of gastrointestinal infections to autoimmunity. , 2001, Journal of autoimmunity.

[96]  U. Zähringer,et al.  Synthesis and identification in bacterial lipopolysaccharides of 5,7-diacetamido-3,5,7,9-tetradeoxy-D-glycero-D-galacto- and -D-glycero-D-talo-non-2-ulosonic acids. , 2001, Carbohydrate research.

[97]  R. Dwek,et al.  Glycosylation and the immune system. , 2001, Science.

[98]  J. Fridovich-Keil,et al.  Crystallographic evidence for Tyr 157 functioning as the active site base in human UDP-galactose 4-epimerase. , 2000, Biochemistry.

[99]  U. Zähringer,et al.  Cloning and functional characterization of a 30 kb gene locus required for lipopolysaccharide biosynthesis in Legionella pneumophila. , 2000, International journal of medical microbiology : IJMM.

[100]  B. Barrell,et al.  The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences , 2000, Nature.

[101]  A. Labigne,et al.  Cloning and allelic exchange mutagenesis of two flagellin genes of Helicobacter felis , 1999, Molecular microbiology.

[102]  C. Szymanski,et al.  Evidence for a system of general protein glycosylation in Campylobacter jejuni , 1999, Molecular microbiology.

[103]  A. Jäschke,et al.  In Vitro Selected Oligonucleotides as Tools in Organic Chemistry , 1999 .

[104]  E. Moxon,et al.  Identification of a novel gene involved in pilin glycosylation in Neisseria meningitidis , 1998, Molecular microbiology.

[105]  S. Haseley,et al.  Structural studies of the putative O-specific polysaccharide of Acinetobacter baumannii O24 containing 5,7-diamino-3,5,7,9-tetradeoxy-L-glycero-D-galacto-nonulosonic acid. , 1997, European journal of biochemistry.

[106]  C. Josenhans,et al.  Colonization of gnotobiotic piglets by Helicobacter pylori deficient in two flagellin genes , 1996, Infection and immunity.

[107]  E. Ivanova,et al.  Structure of the capsular polysaccharide from Alteromonas sp. CMM 155. , 1995, Carbohydrate research.

[108]  J. Saunders,et al.  Meningococcal pilin: a glycoprotein substituted with digalactosyl 2,4‐diacetamido‐2,4,6‐trideoxyhexose , 1995, Molecular microbiology.

[109]  M Krook,et al.  Short-chain dehydrogenases/reductases (SDR). , 1995, Biochemistry.

[110]  J. Heijenoort,et al.  Copurification of glucosamine-1-phosphate acetyltransferase and N-acetylglucosamine-1-phosphate uridyltransferase activities of Escherichia coli: characterization of the glmU gene product as a bifunctional enzyme catalyzing two subsequent steps in the pathway for UDP-N-acetylglucosamine synthesis , 1994, Journal of bacteriology.

[111]  E. Rietschel,et al.  The structure of the O-specific chain of Legionella pneumophila serogroup 1 lipopolysaccharide. , 1994, European journal of biochemistry.

[112]  A. Labigne,et al.  Cloning and genetic characterization of the Helicobacter pylori and Helicobacter mustelae flaB flagellin genes and construction of H. pylori flaA- and flaB-negative mutants by electroporation-mediated allelic exchange , 1993, Journal of bacteriology.

[113]  A. Varki,et al.  Biological roles of oligosaccharides: all of the theories are correct , 1993, Glycobiology.

[114]  P. Jansson,et al.  Structural studies of the Vibrio cholerae O:5 O-antigen polysaccharide. , 1991, Carbohydrate research.

[115]  M. Kostrzynska,et al.  Identification, characterization, and spatial localization of two flagellin species in Helicobacter pylori flagella , 1991, Journal of bacteriology.

[116]  N. Sharon,et al.  Synthesis of 2-acetamido-2,6-dideoxy-D-glucose (N-acetyl-D-quinovosamine), 2-acetamido-2,6-dideoxy-D-galactose (N-acetyl-D-fucosamine), and 2,4-diacetamido-2,4,6-trideoxy-D-glucose from 2-acetamido-2-deoxy-D-glucose , 1974 .

[117]  N. Sharon,et al.  The isolation of D-fucosamine (2-amino-2,6-dideoxy-D-galactose) from polysaccharides of Bacillus. , 1964, The Biochemical journal.

[118]  STRUCTURAL AND FUNCTIONAL ANALYSIS , 2015 .

[119]  P. Jansson,et al.  Structural studies of the Vibrio cholerae O:3 O-antigen polysaccharide. , 1991, Carbohydrate research.

[120]  Billy,et al.  [Campylobacter jejuni]. , 1989, Tijdschrift voor diergeneeskunde.

[121]  Sidney M. Hecht,et al.  Structural Studies of , 1979 .

[122]  N. Sharon,et al.  The diaminohexose component of a polysaccharide isolated from Bacillus subtilis. , 1960, The Journal of biological chemistry.

[123]  N. Sharon,et al.  The isolation of a diaminohexose from Bacillus subtilis. , 1959, Biochimica et biophysica acta.

[124]  C. Coulson,et al.  Molecular Architecture , 1953, Nature.