Membrane engineering for environmental protection and sustainable industrial growth: Options for water and gas treatment

The increasing demand for materials, energy and products drives chemical engineers to propose new solutions everyday able to promote development while supporting sustainable industrial growth. Membrane engineering can offer significant assets to this development. Here, they are identified the most interesting aspects of membrane engineering in strategic industrial sectors such as water treatment, energy production and depletion and reuse of raw materials. The opportunity to integrate membrane units with innovative systems to exploit the potential advantages derived from their synergic uses is also emphasized. The analysis of the potentialities of these new technologies is supported by the introduction of process intensification metrics which provide an alternative and innovative point of view regarding the unit performance, highlighting important aspects characterizing the technology and not identified by the conventional analysis of the unit performance.

[1]  Tom Van Gerven,et al.  RECENT DEVELOPMENTS IN MEMBRANE-BASED TECHNOLOGIES FOR CO2 CAPTURE , 2012 .

[2]  James T. Murphy,et al.  Capturing Carbon from Existing Coal-Fired Power Plants , 2009 .

[3]  G. Witkamp,et al.  Eutectic freeze crystallization in a new apparatus: the cooled disk column crystallizer , 2004 .

[4]  Enrico Drioli,et al.  H2 Separation From H2/N2 and H2/CO Mixtures with Co-Polyimide Hollow Fiber Module , 2010 .

[5]  Akira Ito,et al.  Dehumidification of air by a hygroscopic liquid membrane supported on surface of a hydrophobic microporous membrane , 2000 .

[6]  Enrico Drioli,et al.  Integrated membrane system for pure hydrogen production: A PdAg membrane reactor and a PEMFC , 2011 .

[7]  J. de Koning,et al.  Wastewater reuse in Europe , 2006 .

[8]  G. Wade Miller,et al.  Integrated concepts in water reuse: managing global water needs , 2006 .

[9]  A. M. Adris,et al.  Investigation of Methane–Steam Reforming in Fluidized Bed Membrane Reactors , 2003 .

[10]  J. C. Charpentier Process intensification, a path to the future , 2006 .

[11]  L. Peters,et al.  CO2 removal from natural gas by employing amine absorption and membrane technology—A technical and economical analysis , 2011 .

[12]  Enrico Drioli,et al.  Upgrading of a syngas mixture for pure hydrogen production in a Pd–Ag membrane reactor , 2009 .

[13]  Young Moo Lee,et al.  Polymers with Cavities Tuned for Fast Selective Transport of Small Molecules and Ions , 2007, Science.

[14]  E. Drioli,et al.  Membrane Condenser as a New Technology for Water Recovery from Humidified “Waste” Gaseous Streams , 2013 .

[15]  Ivo F. J. Vankelecom,et al.  Membrane-based technologies for biogas separations. , 2010, Chemical Society reviews.

[16]  Thomas Melin,et al.  State-of-the-art of reverse osmosis desalination , 2007 .

[17]  Mj Martin Tuinier,et al.  Techno-economic evaluation of cryogenic CO2 capture—A comparison with absorption and membrane technology , 2011 .

[18]  Bruce C. Folkedahl,et al.  Water Extraction from Coal-Fired Power Plant Flue Gas , 2006 .

[19]  Adam Harvey,et al.  Process Intensification for Green Chemistry: Engineering Solutions for Sustainable Chemical Processing , 2013 .

[20]  Raphael Semiat,et al.  Energy issues in desalination processes. , 2008, Environmental science & technology.

[21]  Enrico Drioli,et al.  Membrane technologies for CO2 separation , 2010 .

[22]  E. Drioli,et al.  Integrated membrane systems for seawater desalination , 2006 .

[23]  Kurt H. Nelson,et al.  DEPOSITION OF SALTS FROM SEA WATER BY FRIGID CONCENTRATION , 1954 .

[24]  Anna Magrini,et al.  On the application of a membrane air—liquid contactor for air dehumidification , 1997 .

[25]  C. M. White,et al.  Separation and Capture of CO2 from Large Stationary Sources and Sequestration in Geological Formations—Coalbeds and Deep Saline Aquifers , 2003, Journal of the Air & Waste Management Association.

[26]  Enrico Drioli,et al.  Medium/high temperature water gas shift reaction in a Pd–Ag membrane reactor: an experimental investigation , 2012 .

[27]  Enrico Drioli,et al.  Progress in membrane crystallization , 2012 .

[28]  José P. B. Mota,et al.  Chapter 9:Novel Hybrid Membrane/Pressure Swing Adsorption Processes for Gas Separation Applications , 2011 .

[29]  J. A. Redondo,et al.  Brackish-, sea- and wastewater desalination , 2001 .

[30]  Pierre Côté,et al.  Immersed membranes activated sludge process applied to the treatment of municipal wastewater , 1998 .

[31]  Gang Li,et al.  Pilot plant performance of rubbery polymeric membranes for carbon dioxide separation from syngas , 2012 .

[32]  Dongsheng Zhu,et al.  Thermodynamic modeling of a novel air dehumidification system , 2005, Energy and Buildings.

[33]  Bart Van der Bruggen,et al.  Distillation vs. membrane filtration: overview of process evolutions in seawater desalination , 2002 .

[34]  Robert Spillman,et al.  Chapter 13 Economics of gas separation membrane processes , 1995 .

[35]  L. Robeson,et al.  The upper bound revisited , 2008 .

[36]  Matthias Wessling,et al.  Flue gas dehydration using polymer membranes , 2008 .

[37]  M. Elimelech,et al.  The Future of Seawater Desalination: Energy, Technology, and the Environment , 2011, Science.

[38]  Enrico Drioli,et al.  Membrane engineering in process intensificationAn overview , 2011 .

[39]  Tai‐Shung Chung,et al.  Polymeric membranes for the hydrogen economy: Contemporary approaches and prospects for the future , 2009 .

[40]  Howard J. Herzog What Future for Carbon Capture and Sequestration? New technologies could reduce carbon dioxide emissions to the atmosphere while still allowing the use of fossil fuels. , 2001 .

[41]  Jae Eun Lee,et al.  Highly permeable and selective poly(benzoxazole-co-imide) membranes for gas separation , 2010 .

[42]  Benny D. Freeman,et al.  High‐Performance Polymer Membranes for Natural‐Gas Sweetening , 2006 .

[43]  Enrico Drioli,et al.  Trypsin crystallization by membrane-based techniques. , 2005, Journal of structural biology.

[44]  松山 秀人,et al.  Bubble Production and Foamate Recovery , 2014 .

[45]  Clem E. Powell,et al.  Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases , 2006 .

[46]  Enrico Drioli,et al.  Energy and mass intensities in hydrogen upgrading by a membrane reactor , 2014 .

[47]  Enrico Drioli,et al.  Membrane distillation: Recent developments and perspectives , 2015 .

[48]  Jason K. Ward,et al.  CO2–CH4 permeation in high zeolite 4A loading mixed matrix membranes , 2011 .

[49]  Enrico Drioli,et al.  Pd-based membrane reactors for one-stage process of water gas shift , 2011 .

[50]  Jason K. Ward,et al.  Metal organic framework mixed matrix membranes for gas separations , 2010 .

[51]  Haiqing Lin,et al.  Power plant post-combustion carbon dioxide capture: An opportunity for membranes , 2010 .

[52]  Detlef Stolten,et al.  A parametric study of the impact of membrane materials and process operating conditions on carbon capture from humidified flue gas , 2013 .

[53]  Enrico Drioli,et al.  Integrated membrane systems for seawater desalination: energetic and exergetic analysis, economic evaluation, experimental study , 2007 .

[54]  Enrico Drioli,et al.  Integrated system for recovery of CaCO3, NaCl and MgSO4·7H2O from nanofiltration retentate , 2004 .

[55]  Eric Favre,et al.  Carbon dioxide recovery from post-combustion processes: Can gas permeation membranes compete with absorption? , 2007 .

[56]  R. L. Sawhney,et al.  Comparison of environmental and economic aspects of various hydrogen production methods , 2008 .

[57]  Enrico Drioli,et al.  Water recovery from humidified waste gas streams: Quality control using membrane condenser technology , 2014 .

[58]  A. Tazi-Pain,et al.  Recent improvement of the BIOSEP® process for industrial and municipal wastewater treatment , 2002 .

[59]  F. Barbir PEM electrolysis for production of hydrogen from renewable energy sources , 2005 .

[60]  W. S. Winston Ho,et al.  Recent developments on membranes for post-combustion carbon capture , 2011 .

[61]  Roda Bounaceur,et al.  Biogas, membranes and carbon dioxide capture , 2009 .

[62]  Enrico Drioli,et al.  Integrating Membrane Contactors Technology and Pressure-Driven Membrane Operations for Seawater Desalination: Energy, Exergy and Costs Analysis , 2006 .

[63]  Enrico Drioli,et al.  Process intensification strategies and membrane engineering , 2012 .

[64]  Enrico Drioli,et al.  Waste Gaseous Streams: From Environmental Issue to Source of Water by Using Membrane Condensers , 2014 .

[65]  Enrico Drioli,et al.  Pd-Based Membrane Reactor for Syngas Upgrading , 2009 .

[66]  Alberto Pettinau,et al.  Coal gasification pilot plant for hydrogen production. Part B: syngas conversion and hydrogen separation , 2005 .

[67]  Enrico Drioli,et al.  An innovative configuration of a Pd-based membrane reactor for the production of pure hydrogen: Experimental analysis of water gas shift , 2008 .

[68]  Ugo Bardi,et al.  Extracting Minerals from Seawater: An Energy Analysis , 2010 .

[69]  F. Adamczyk,et al.  Retrofit of a flue gas heat recovery system at the mehrum power plant: An example of power plant lifetime evaluation in practise , 2004 .

[70]  Fengqi You,et al.  Sustainable design and synthesis of energy systems , 2015 .

[71]  Enrico Drioli,et al.  ECTFE membrane preparation for recovery of humidified gas streams using membrane condenser , 2014 .

[72]  Simon Judd,et al.  Membranes for industrial wastewater recovery and re-use , 2003 .

[73]  J.H.J.M. van der Graaf,et al.  Membrane bioreactor technology for wastewater treatment and reuse , 2006 .

[74]  R. G. Minet,et al.  Packed bed catalytic membrane reactors , 1992 .

[75]  Vladimir Strezov,et al.  Biomass processing technologies , 2014 .

[76]  John R. Grace,et al.  The fluidized-bed membrane reactor for steam methane reforming: model verification and parametric study , 1997 .

[77]  David R. Luebke,et al.  Advances in CO2 capture technology: A patent review , 2013 .

[78]  G. Barbieri,et al.  embrane technologies for CO 2 separation , 2009 .

[79]  F. Dautzenberg,et al.  Process intensification using multifunctional reactors , 2001 .

[80]  Young Moo Lee,et al.  Thermally Rearranged (TR) Poly(ether−benzoxazole) Membranes for Gas Separation , 2011 .

[81]  André Bardow,et al.  Efficient technologies for worldwide clean water supply , 2012 .

[82]  Volker Hessel,et al.  Novel process windows for enabling, accelerating, and uplifting flow chemistry. , 2013, ChemSusChem.

[83]  Enrico Drioli,et al.  Process Intensification for greenhouse gas separation from biogas: More efficient process schemes based on membrane-integrated systems , 2015 .

[84]  Enrico Drioli,et al.  Membrane crystallization for salts recovery from brine—an experimental and theoretical analysis , 2016 .

[85]  Enrico Drioli,et al.  Conversion−Temperature Diagram for a Palladium Membrane Reactor. Analysis of an Endothermic Reaction: Methane Steam Reforming , 2001 .