Analysis of the Otd-dependent transcriptome supports the evolutionary conservation of CRX/OTX/OTD functions in flies and vertebrates.

[1]  S. Kay,et al.  Impaired clock output by altered connectivity in the circadian network , 2007, Proceedings of the National Academy of Sciences.

[2]  James B. Earl,et al.  Expression of Drosophila rhodopsins during photoreceptor cell differentiation: insights into R7 and R8 cell subtype commitment. , 2006, Gene expression patterns : GEP.

[3]  C. Helfrich-Förster,et al.  Reevaluation of Drosophila melanogaster's neuronal circadian pacemakers reveals new neuronal classes , 2006, The Journal of comparative neurology.

[4]  C. Helfrich-Förster,et al.  Functional Analysis of Circadian Pacemaker Neurons in Drosophila melanogaster , 2006, The Journal of Neuroscience.

[5]  A. Simeone,et al.  Otx genes in the evolution of the vertebrate brain , 2005, Brain Research Bulletin.

[6]  H. Reichert,et al.  Insights into the urbilaterian brain: conserved genetic patterning mechanisms in insect and vertebrate brain development , 2005, Heredity.

[7]  D. Arendt,et al.  Ciliary Photoreceptors with a Vertebrate-Type Opsin in an Invertebrate Brain , 2004, Science.

[8]  A. Murakami,et al.  Truncation and mutagenesis analysis of the human X-arrestin gene promoter. , 2004, Gene.

[9]  Lior Pachter,et al.  VISTA: computational tools for comparative genomics , 2004, Nucleic Acids Res..

[10]  D. Zack,et al.  Functional analysis of the rod photoreceptor cGMP phosphodiesterase alpha-subunit gene promoter: Nrl and Crx are required for full transcriptional activity. , 2004, The Journal of biological chemistry.

[11]  I. Draškovič,et al.  A Mosaic Genetic Screen Reveals Distinct Roles for trithorax and Polycomb Group Genes in Drosophila Eye Development , 2004, Genetics.

[12]  Sudhir Kumar,et al.  Temporal patterns of fruit fly (Drosophila) evolution revealed by mutation clocks. , 2003, Molecular biology and evolution.

[13]  A. Hofbauer,et al.  Does Drosophila have seven eyes? , 1989, Naturwissenschaften.

[14]  I. Levitan,et al.  Pattern of distribution and cycling of SLOB, Slowpoke channel binding protein, in Drosophila , 2004, BMC Neuroscience.

[15]  A. Ghysen,et al.  The origin and evolution of the nervous system. , 2003, The International journal of developmental biology.

[16]  D. Arendt Evolution of eyes and photoreceptor cell types. , 2003, The International journal of developmental biology.

[17]  Yasuo Tano,et al.  Otx2 homeobox gene controls retinal photoreceptor cell fate and pineal gland development , 2003, Nature Neuroscience.

[18]  Jeffrey C. Hall,et al.  A Self-Sustaining, Light-Entrainable Circadian Oscillator in the Drosophila Brain , 2003, Current Biology.

[19]  Jae K. Lee,et al.  Local-pooled-error test for identifying differentially expressed genes with a small number of replicated microarrays , 2003, Bioinform..

[20]  D. Papatsenko,et al.  Otd/Crx, a dual regulator for the specification of ommatidia subtypes in the Drosophila retina. , 2003, Developmental cell.

[21]  R. Carthew,et al.  Making a better RNAi vector for Drosophila: use of intron spacers. , 2003, Methods.

[22]  Craig Montell,et al.  Light Adaptation through Phosphoinositide-Regulated Translocation of Drosophila Visual Arrestin , 2003, Neuron.

[23]  Barry Honig,et al.  Target Explorer: an automated tool for the identification of new target genes for a specified set of transcription factors , 2003, Nucleic Acids Res..

[24]  D. Papatsenko,et al.  Distinction between color photoreceptor cell fates is controlled by Prospero in Drosophila. , 2003, Developmental cell.

[25]  H. Reichert,et al.  An urbilaterian origin of the tripartite brain: developmental genetic insights from Drosophila , 2003, Development.

[26]  Anna G. Nazina,et al.  Homotypic regulatory clusters in Drosophila. , 2003, Genome research.

[27]  W. Harris,et al.  XOtx5b and XOtx2 regulate photoreceptor and bipolar fates in the Xenopus retina , 2003, Development.

[28]  J. Plouhinec,et al.  The mammalian Crx genes are highly divergent representatives of the Otx5 gene family, a gnathostome orthology class of orthodenticle-related homeogenes involved in the differentiation of retinal photoreceptors and circadian entrainment. , 2003, Molecular biology and evolution.

[29]  S. Kay,et al.  Genome-Wide Expression Analysis in DrosophilaReveals Genes Controlling Circadian Behavior , 2002, The Journal of Neuroscience.

[30]  I. Meinertzhagen,et al.  The Extraretinal Eyelet of Drosophila: Development, Ultrastructure, and Putative Circadian Function , 2002, The Journal of Neuroscience.

[31]  G. Stormo,et al.  Influence of the period-dependent circadian clock on diurnal, circadian, and aperiodic gene expression in Drosophila melanogaster , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[32]  D. Arendt,et al.  Development of pigment-cup eyes in the polychaete Platynereis dumerilii and evolutionary conservation of larval eyes in Bilateria. , 2002, Development.

[33]  Pamela A. Raymond,et al.  Otx5 regulates genes that show circadian expression in the zebrafish pineal complex , 2002, Nature Genetics.

[34]  Michael Primig,et al.  Evolutionary conservation of otd/Otx2 transcription factor action: a genome-wide microarray analysis in Drosophila , 2002, Genome Biology.

[35]  Michael J. McDonald,et al.  Microarray Analysis and Organization of Circadian Gene Expression in Drosophila , 2001, Cell.

[36]  Adam Claridge‐Chang,et al.  Circadian Regulation of Gene Expression Systems in the Drosophila Head , 2001, Neuron.

[37]  A. Simeone,et al.  Developmental genetic evidence for a monophyletic origin of the bilaterian brain. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[38]  D. Arendt,et al.  Reconstructing the eyes of Urbilateria. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[39]  A. Simeone,et al.  Otx genes in the development and evolution of the vertebrate brain , 2001, International Journal of Developmental Neuroscience.

[40]  P. Bovolenta,et al.  Otx genes are required for tissue specification in the developing eye. , 2001, Development.

[41]  C. Li,et al.  Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[42]  G. Church,et al.  Microarray analysis of the transcriptional network controlled by the photoreceptor homeobox gene Crx , 2000, Current Biology.

[43]  E. Wawrousek,et al.  Both PCE-1/RX and OTX/CRX Interactions Are Necessary for Photoreceptor-specific Gene Expression* , 2000, The Journal of Biological Chemistry.

[44]  Eric M. Morrow,et al.  Retinopathy and attenuated circadian entrainment in Crx-deficient mice , 1999, Nature Genetics.

[45]  I. Meinertzhagen,et al.  Extraretinal Photoreceptors at the Compound Eye's Posterior Margin in Drosophila melanogaster , 1999, The Journal of comparative neurology.

[46]  K Ikeo,et al.  Pax 6: mastering eye morphogenesis and eye evolution. , 1999, Trends in genetics : TIG.

[47]  D. Zack,et al.  Functional dissection of the promoter of the interphotoreceptor retinoid-binding protein gene: the cone-rod-homeobox element is essential for photoreceptor-specific expression in vivo. , 1999, Journal of biochemistry.

[48]  J. Besharse,et al.  Immediate Upstream Sequence of Arrestin Directs Rod-specific Expression in Xenopus * , 1999, The Journal of Biological Chemistry.

[49]  S. Fong,et al.  Elements regulating the transcription of human interstitial retinoid-binding protein (IRBP) gene in cultured retinoblastoma cells. , 1999, Current eye research.

[50]  R. Ravazzolo,et al.  OTX2 homeodomain protein binds a DNA element necessary for interphotoreceptor retinoid binding protein gene expression , 1999, Mechanisms of Development.

[51]  S. P. Fodor,et al.  High density synthetic oligonucleotide arrays , 1999, Nature Genetics.

[52]  C. Freund,et al.  A range of clinical phenotypes associated with mutations in CRX, a photoreceptor transcription-factor gene. , 1998, American journal of human genetics.

[53]  A. V. Cideciyan,et al.  Retinal degenerations with truncation mutations in the cone-rod homeobox (CRX) gene. , 1998, Investigative ophthalmology & visual science.

[54]  P. Holland,et al.  Gene and domain duplication in the chordate Otx gene family: insights from amphioxus Otx. , 1998, Molecular biology and evolution.

[55]  A. Simeone,et al.  Murine Otx1 and Drosophila otd genes share conserved genetic functions required in invertebrate and vertebrate brain development. , 1998, Development.

[56]  A. Simeone,et al.  Equivalence of the fly orthodenticle gene and the human OTX genes in embryonic brain development of Drosophila. , 1998, Development.

[57]  V. Sheffield,et al.  De novo mutations in the CRX homeobox gene associated with Leber congenital amaurosis , 1998, Nature Genetics.

[58]  A. Simeone,et al.  Developmental rescue of Drosophila cephalic defects by the human Otx genes. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Stephen W Scherer,et al.  Cone-Rod Dystrophy Due to Mutations in a Novel Photoreceptor-Specific Homeobox Gene ( CRX ) Essential for Maintenance of the Photoreceptor , 1997, Cell.

[60]  C. Cepko,et al.  Crx, a Novel otx-like Homeobox Gene, Shows Photoreceptor-Specific Expression and Regulates Photoreceptor Differentiation , 1997, Cell.

[61]  Donald J Zack,et al.  Crx, a Novel Otx-like Paired-Homeodomain Protein, Binds to and Transactivates Photoreceptor Cell-Specific Genes , 1997, Neuron.

[62]  D. Papatsenko,et al.  A new rhodopsin in R8 photoreceptors of Drosophila: evidence for coordinate expression with Rh3 in R7 cells. , 1997, Development.

[63]  V. Hartenstein,et al.  Control of early neurogenesis of the Drosophila brain by the head gap genes tll, otd, ems, and btd. , 1997, Developmental biology.

[64]  L. Chadwell,et al.  Identification of a Novel Drosophila Opsin Reveals Specific Patterning of the R7 and R8 Photoreceptor Cells , 1996, Neuron.

[65]  S. Aizawa,et al.  Otx1 function overlaps with Otx2 in development of mouse forebrain and midbrain , 1996, Genes to cells : devoted to molecular & cellular mechanisms.

[66]  Susan J. Brown,et al.  Two orthodenticle-related genes in the short-germ beetle Tribolium castaneum , 1996, Development Genes and Evolution.

[67]  Y. Sasai,et al.  A common plan for dorsoventral patterning in Bilateria , 1996, Nature.

[68]  C. Zuker,et al.  The biology of vision of Drosophila. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[69]  L. Stryer,et al.  Vision: from photon to perception. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[70]  D. Johnson,et al.  orthodenticle is required for photoreceptor cell development in the Drosophila eye. , 1996, Developmental biology.

[71]  Katsuo Furukubo-Tokunaga,et al.  Developmental defects in brain segmentation caused by mutations of the homeobox genes orthodenticle and empty spiracles in Drosophila , 1995, Neuron.

[72]  C. Zuker,et al.  Regulation of PLC-mediated signalling in vivo by CDP-diacylglycerol synthase , 1995, Nature.

[73]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[74]  D. Ballinger,et al.  Mutations in calphotin, the gene encoding a Drosophila photoreceptor cell-specific calcium-binding protein, reveal roles in cellular morphogenesis and survival. , 1994, Genetics.

[75]  C. Rieder,et al.  Greatwall kinase , 2004, The Journal of cell biology.

[76]  C. Zuker,et al.  Arrestin function in inactivation of G protein-coupled receptor rhodopsin in vivo. , 1993, Science.

[77]  N. Perrimon,et al.  orthodenticle activity is required for the development of medial structures in the larval and adult epidermis of Drosophila. , 1992, Development.

[78]  S. Zipursky,et al.  Interaction of bride of sevenless membrane-bound ligand and the sevenless tyrosine-kinase receptor , 1991, Nature.

[79]  S. Zipursky,et al.  Induction of cell fate in the Drosophila retina: the bride of sevenless protein is predicted to contain a large extracellular domain and seven transmembrane segments. , 1990, Genes & development.

[80]  N. Perrimon,et al.  The orthodenticle gene encodes a novel homeo domain protein involved in the development of the Drosophila nervous system and ocellar visual structures. , 1990, Genes & development.

[81]  Norbert Perrimon,et al.  The orthodenticle gene is regulated by bicoid and torso and specifies Drosophila head development , 1990, Nature.

[82]  Michael Ashburner,et al.  Drosophila: A laboratory handbook , 1990 .

[83]  S. Zipursky,et al.  Cell-cell interaction in the drosophila retina: The bride of sevenless gene is required in photoreceptor cell R8 for R7 cell development , 1988, Cell.

[84]  S. Zipursky,et al.  Analysis of mutants in chaoptin, a photoreceptor cell-specific glycoprotein in Drosophila, reveals its role in cellular morphogenesis , 1988, Cell.

[85]  J. Lis,et al.  A germline transformation analysis reveals flexibility in the organization of heat shock consensus elements. , 1987, Nucleic acids research.

[86]  A. Garcı́a-Bellido Genetic control of wing disc development in Drosophila. , 2008, Ciba Foundation symposium.

[87]  M. Demerec,et al.  Biology of Drosophila , 1950 .