Holonomic Functions and Their Relation to Linearly Constrained Languages

Dans cet article on considere la classe des langages avec des restrictions lineaires (LCL). Un langage L est dans la classe LCL si et seulement si il est l'ensemble de mots d'un langage algebrique non ambigu L' qui verifient des restrictions lineaires sur le nombre des occurrences des lettres. Nous montrons que a chaque langage dans LCL on peut associer une fonction generatrice holonome

[1]  Arto Salomaa,et al.  Automata-Theoretic Aspects of Formal Power Series , 1978, Texts and Monographs in Computer Science.

[2]  Gérard P. Huet,et al.  An Algorithm to Generate the Basis of Solutions to Homogeneous Linear Diophantine Equations , 1978, Inf. Process. Lett..

[3]  I. N. Bernshtein Modules over a ring of differential operators. Study of the fundamental solutions of equations with constant coefficients , 1971 .

[4]  I. N. Bernshtein The analytic continuation of generalized functions with respect to a parameter , 1972 .

[5]  D. Zeilberger A holonomic systems approach to special functions identities , 1990 .

[6]  D. Zeilberger,et al.  Resurrecting the asymptotics of linear recurrences , 1985 .

[7]  Philippe Flajolet,et al.  Analytic Models and Ambiguity of Context-free Languages* , 2022 .

[8]  Richard P. Stanley,et al.  Differentiably Finite Power Series , 1980, Eur. J. Comb..

[9]  M. Schützenberger,et al.  Rational sets in commutative monoids , 1969 .

[10]  Jean Berstel,et al.  Rational series and their languages , 1988, EATCS monographs on theoretical computer science.

[11]  Michael Clausen,et al.  Efficient Solution of Linear Diophantine Equations , 1989, J. Symb. Comput..

[12]  Alberto Bertoni,et al.  Holonomic Generating Functions and Context Free Languages , 1992, Int. J. Found. Comput. Sci..

[13]  Noam Chomsky,et al.  The Algebraic Theory of Context-Free Languages* , 1963 .

[14]  L. Lipshitz,et al.  D-finite power series , 1989 .

[15]  P. Massazza,et al.  Some applications and techniques for generating functions , 1989 .

[16]  A. Bertoni,et al.  Counting Problems and Algebraic Formal Power Series in Noncommuting Variables , 1990, Inf. Process. Lett..