Maximal and Minimal Partial Clones

The following two problems are addressed in this paper. Let k ≥ 2, k be a k-element set and M be a family of maximal partial clones with trivial intersection over ks. What is the smallest possible cardinality of M? Dually, if F is a family of minimal partial clones whose join is the set of all partial functions on k, then what is the smallest possible cardinality of F? We show that the answer to these two problems is three.

[1]  Lucien Haddad,et al.  Partial clones and their generating sets , 1999, Proceedings 1999 29th IEEE International Symposium on Multiple-Valued Logic (Cat. No.99CB36329).

[2]  Lucien Haddad,et al.  Maximal partial clones determined by the areflexive relations , 1989, Discret. Appl. Math..

[3]  Ivo G. Rosenberg,et al.  Gigantic pairs of minimal clones , 1999, Proceedings 1999 29th IEEE International Symposium on Multiple-Valued Logic (Cat. No.99CB36329).

[4]  Reinhard Pöschel,et al.  Minimal partial clones , 1991, Bulletin of the Australian Mathematical Society.

[5]  László Szabó On Minimal and Maximal Clones II , 1998, Acta Cybern..

[6]  B. Csákány All minimal clones on the three-element set , 1983, Acta Cybern..

[7]  Keith A. Kearnes,et al.  The join of two minimal clones and the meet of two maximal clones , 2001 .

[8]  Péter P. Pálfy,et al.  On Binary Minimal Clones , 1996, Acta Cybern..

[9]  Lucien Haddad,et al.  Completeness theory for finite partial algebras , 1992 .

[10]  I. Rosenberg MINIMAL CLONES I: THE FIVE TYPES , 1986 .

[11]  Reinhard Pöschel,et al.  Funktionen- und Relationenalgebren , 1979 .