The role of organic ligand shell structures in colloidal nanocrystal synthesis

[1]  M. Beard,et al.  Size-Dependent Janus-Ligand Shell Formation on PbS Quantum Dots , 2021, The Journal of Physical Chemistry C.

[2]  S. Claridge,et al.  Oleylamine Impurities Regulate Temperature-Dependent Hierarchical Assembly of Ultranarrow Gold Nanowires on Biotemplated Interfaces. , 2021, ACS nano.

[3]  A. Alivisatos,et al.  Observation of ordered organic capping ligands on semiconducting quantum dots via powder X-ray diffraction , 2021, Nature Communications.

[4]  A. Alivisatos,et al.  Thermodynamics of Composition Dependent Ligand Exchange on the Surfaces of Colloidal Indium Phosphide Quantum Dots. , 2021, ACS nano.

[5]  E. Rabani,et al.  Colloidal Synthesis Path to 2D Crystalline Quantum Dot Superlattices. , 2020, ACS nano.

[6]  Xiaogang Peng,et al.  Monodisperse CdSe Quantum Dots Encased in Six (100) Facets via Ligand-Controlled Nucleation and Growth. , 2020, Journal of the American Chemical Society.

[7]  A. Alivisatos,et al.  Thermodynamic Investigation of Increased Luminescence in Indium Phosphide Quantum Dots by Treatment with Metal Halide Salts. , 2020, Journal of the American Chemical Society.

[8]  Yi Shen,et al.  Isothermal Titration Calorimetry Resolves Sequential Ligand Exchange and Association Reactions in Treatment of Oleate-Capped CdSe Quantum Dots with Alkylphosphonic Acid , 2020 .

[9]  U. Banin,et al.  A Tale of Tails: Thermodynamics of CdSe Nanocrystal Surface Ligand Exchange. , 2020, Nano letters.

[10]  A. Alivisatos,et al.  Tracking the Effects of Ligands on Oxidative Etching of Gold Nanorods in Graphene Liquid Cell Electron Microscopy. , 2020, ACS nano.

[11]  Wenxing Yang,et al.  Surface ligand "liquid" to "crystalline" phase transition modulates the solar H2 production quantum efficiency of CdS nanorod/mediator/hydrogenases assemblies. , 2020, ACS applied materials & interfaces.

[12]  L. Liz‐Marzán,et al.  Reproducibility in Nanocrystal Synthesis? Watch Out for Impurities! , 2020, ACS nano.

[13]  E. Chan,et al.  Elucidating the weakly reversible Cs-Pb-Br perovskite nanocrystal reaction network with high-throughput maps and transformations. , 2020, Journal of the American Chemical Society.

[14]  Jacob H. Olshansky,et al.  Unsaturated Ligands Seed an Order to Disorder Transition in Mixed Ligand Shells of CdSe/CdS Quantum Dots. , 2019, ACS nano.

[15]  D. Gamelin,et al.  Effects of Surface Chemistry on the Photophysics of Colloidal InP Nanocrystals. , 2019, ACS nano.

[16]  Dae-Young Chung,et al.  Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes , 2019, Nature.

[17]  L. Manna,et al.  Alkyl Phosphonic Acids Deliver CsPbBr3 Nanocrystals with High Photoluminescence Quantum Yield and Truncated Octahedron Shape , 2019, Chemistry of Materials.

[18]  X. Kong,et al.  Identification of Facet-Dependent Coordination Structures of Carboxylate Ligands on CdSe Nanocrystals. , 2019, Journal of the American Chemical Society.

[19]  Daniel T. W. Toolan,et al.  Ligand Shell Structure in Lead Sulfide–Oleic Acid Colloidal Quantum Dots Revealed by Small-Angle Scattering , 2019, The journal of physical chemistry letters.

[20]  A. Kim,et al.  Tip-Patched Nanoprisms from Formation of Ligand Islands. , 2019, Journal of the American Chemical Society.

[21]  E. Rabani,et al.  Ultrahigh Hot Carrier Transient Photocurrent in Nanocrystal Arrays by Auger Recombination. , 2019, Nano letters.

[22]  Alberto Salleo,et al.  Redefining near-unity luminescence in quantum dots with photothermal threshold quantum yield , 2019, Science.

[23]  Ariane M. Vartanian,et al.  Solution NMR Analysis of Ligand Environment in Quaternary Ammonium-Terminated Self-Assembled Monolayers on Gold Nanoparticles: The Effect of Surface Curvature and Ligand Structure. , 2019, Journal of the American Chemical Society.

[24]  S. Ham,et al.  Bright and Uniform Green Light Emitting InP/ZnSe/ZnS Quantum Dots for Wide Color Gamut Displays , 2019, ACS Applied Nano Materials.

[25]  Shin‐Hyun Kim,et al.  Depletion-Mediated Interfacial Assembly of Semiconductor Nanorods. , 2019, Nano letters.

[26]  M. Grünwald,et al.  Orientational Order in Self-Assembled Nanocrystal Superlattices. , 2018, Journal of the American Chemical Society.

[27]  Lin-Wang Wang,et al.  Design Principles for Trap-Free CsPbX3 Nanocrystals: Enumerating and Eliminating Surface Halide Vacancies with Softer Lewis Bases. , 2018, Journal of the American Chemical Society.

[28]  A. Houtepen,et al.  Finding and Fixing Traps in II–VI and III–V Colloidal Quantum Dots: The Importance of Z-Type Ligand Passivation , 2018, Journal of the American Chemical Society.

[29]  Lin-wang Wang,et al.  Trap Passivation in Indium-Based Quantum Dots through Surface Fluorination: Mechanism and Applications. , 2018, ACS nano.

[30]  Yimin A. Wu,et al.  Superstructures generated from truncated tetrahedral quantum dots , 2018, Nature.

[31]  G. Seidler,et al.  Probing Surface Defects of InP Quantum Dots Using Phosphorus Kα and Kβ X-ray Emission Spectroscopy , 2018, Chemistry of Materials.

[32]  R. Rioux,et al.  Thermochemical Measurements of Cation Exchange in CdSe Nanocrystals Using Isothermal Titration Calorimetry. , 2018, Nano letters.

[33]  Paul Mulvaney,et al.  Two Mechanisms Determine Quantum Dot Blinking. , 2018, ACS nano.

[34]  D. Smilgies,et al.  Impact of Size Dispersity, Ligand Coverage, and Ligand Length on the Structure of PbS Nanocrystal Superlattices , 2018 .

[35]  Patrick Davidson,et al.  Ligand-induced twisting of nanoplatelets and their self-assembly into chiral ribbons , 2017, Science Advances.

[36]  Francesco Stellacci,et al.  Characterization of Ligand Shell for Mixed-Ligand Coated Gold Nanoparticles. , 2017, Accounts of chemical research.

[37]  Dong Uk Lee,et al.  Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells , 2017, Science.

[38]  J. Jasieniak,et al.  Binding and Packing in Two-Component Colloidal Quantum Dot Ligand Shells: Linear versus Branched Carboxylates. , 2017, Journal of the American Chemical Society.

[39]  A. Baranov,et al.  Ligand-Dependent Morphology and Optical Properties of Lead Sulfide Quantum Dot Superlattices , 2016 .

[40]  Ashley R. Marshall,et al.  Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics , 2016, Science.

[41]  A Paul Alivisatos,et al.  Insight into the Ligand-Mediated Synthesis of Colloidal CsPbBr3 Perovskite Nanocrystals: The Role of Organic Acid, Base, and Cesium Precursors. , 2016, ACS nano.

[42]  D. Nesbitt,et al.  Origin and control of blinking in quantum dots. , 2016, Nature nanotechnology.

[43]  Yizheng Jin,et al.  Entropic Ligands for Nanocrystals: From Unexpected Solution Properties to Outstanding Processability. , 2016, Nano letters.

[44]  Taeghwan Hyeon,et al.  The surface science of nanocrystals. , 2016, Nature materials.

[45]  Response to “Critical Assessment of the Evidence for Striped Nanoparticles” , 2015, PloS one.

[46]  J. Berg,et al.  Temperature Effects on Micelle Formation and Particle Charging with Span Surfactants in Apolar Media. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[47]  A. Khoshnood,et al.  Polar Solvents Trigger Formation of Reverse Micelles. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[48]  M. Boles,et al.  Many-body effects in nanocrystal superlattices: departure from sphere packing explains stability of binary phases. , 2015, Journal of the American Chemical Society.

[49]  E. Zenkevich,et al.  Tuning electronic states of a CdSe/ZnS quantum dot by only one functional dye molecule. , 2015, ACS nano.

[50]  E. Lifshitz,et al.  Controlling the size of hot injection made nanocrystals by manipulating the diffusion coefficient of the solute. , 2015, Journal of the American Chemical Society.

[51]  Di Wu,et al.  Energy landscape of self-assembled superlattices of PbSe nanocrystals , 2014, Proceedings of the National Academy of Sciences.

[52]  M. Boles,et al.  Self-assembly of tetrahedral CdSe nanocrystals: effective "patchiness" via anisotropic steric interaction. , 2014, Journal of the American Chemical Society.

[53]  J. Granwehr,et al.  Critical Assessment of the Evidence for Striped Nanoparticles , 2013, PloS one.

[54]  Jonathan S. Owen,et al.  Ligand exchange and the stoichiometry of metal chalcogenide nanocrystals: spectroscopic observation of facile metal-carboxylate displacement and binding. , 2013, Journal of the American Chemical Society.

[55]  T. Aubert,et al.  Fast, High Yield, and High Solid Loading Synthesis of Metal Selenide Nanocrystals , 2013 .

[56]  E. Weiss Organic molecules as tools to control the growth, surface structure, and redox activity of colloidal quantum dots. , 2013, Accounts of chemical research.

[57]  O. Graeve,et al.  Ionic concentration effects on reverse micelle size and stability: implications for the synthesis of nanoparticles. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[58]  Yadong Li,et al.  A facile "dispersion-decomposition" route to metal sulfide nanocrystals. , 2011, Chemistry.

[59]  Marie-Paule Pileni,et al.  How To Control the Crystalline Structure of Supracrystals of 5-nm Silver Nanocrystals , 2011 .

[60]  E. Weiss,et al.  Surface-amplified ligand disorder in CdSe quantum dots determined by electron and coherent vibrational spectroscopies. , 2011, Journal of the American Chemical Society.

[61]  Xiaogang Peng,et al.  Size/shape-controlled synthesis of colloidal CdSe quantum disks: ligand and temperature effects. , 2011, Journal of the American Chemical Society.

[62]  Hong Yee Low,et al.  Enhanced ordering in gold nanoparticles self-assembly through excess free ligands. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[63]  Richard G Hennig,et al.  Controlling nanocrystal superlattice symmetry and shape-anisotropic interactions through variable ligand surface coverage. , 2011, Journal of the American Chemical Society.

[64]  M. Kovalenko,et al.  Alkyl chains of surface ligands affect polytypism of cdse nanocrystals and play an important role in the synthesis of anisotropic nanoheterostructures. , 2010, Journal of the American Chemical Society.

[65]  Y. Mi,et al.  Synthesis and growth thermodynamic studies of CdS nanocrystals using isothermal titration calorimetry , 2010 .

[66]  B. Prasad,et al.  Melting Characteristics of Superlattices of Alkanethiol-Capped Gold Nanoparticles: The “Excluded” Story of Excess Thiol , 2010 .

[67]  Yadong Li,et al.  Shape control of CdSe nanocrystals with zinc blende structure. , 2009, Journal of the American Chemical Society.

[68]  J. Ripmeester,et al.  Photoluminescent Colloidal CdS Nanocrystals with High Quality via Noninjection One-Pot Synthesis in 1-Octadecene , 2009 .

[69]  Matt Law,et al.  Structural, optical, and electrical properties of self-assembled films of PbSe nanocrystals treated with 1,2-ethanedithiol. , 2008, ACS nano.

[70]  B. Korgel,et al.  The importance of the CTAB surfactant on the colloidal seed-mediated synthesis of gold nanorods. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[71]  N. Pradhan,et al.  Surface ligand dynamics in growth of nanocrystals. , 2007, Journal of the American Chemical Society.

[72]  M. Steigerwald,et al.  Ligand Control of Growth, Morphology, and Capping Structure of Colloidal CdSe Nanorods , 2007 .

[73]  A. de Keizer,et al.  Calorimetric study on the temperature dependence of the formation of mixed ionic/nonionic micelles. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[74]  S. Wuister,et al.  Luminescence temperature antiquenching of water-soluble CdTe quantum dots: role of the solvent. , 2004, Journal of the American Chemical Society.

[75]  S. Wuister,et al.  Temperature antiquenching of the luminescence from capped CdSe quantum dots. , 2004, Angewandte Chemie.

[76]  Francesco Stellacci,et al.  Spontaneous assembly of subnanometre-ordered domains in the ligand shell of monolayer-protected nanoparticles , 2004, Nature materials.

[77]  G. Ilgenfritz,et al.  Thermodynamic and Kinetic Study of the Sphere-to-Rod Transition in Nonionic Micelles. Aggregation and Stress Relaxation in C14E8 and C16E8/H2O Systems , 2004 .

[78]  Xiaogang Peng,et al.  Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: Ligand effects on monomers and nanocrystals , 2003 .

[79]  A. P. Alivisatos,et al.  Shape control and applications of nanocrystals , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[80]  R. Meulenberg,et al.  Chain Packing Analysis of the Passivating Layer on Nanocrystalline Quantum Dot Surfaces , 2001 .

[81]  T. Pradeep,et al.  Monolayer-Protected Cluster Superlattices: Structural, Spectroscopic, Calorimetric, and Conductivity Studies , 2000 .

[82]  T. C. Green,et al.  Shape-Controlled Synthesis of Colloidal Platinum Nanoparticles , 1996, Science.

[83]  A. Blume,et al.  Thermodynamics of Micelle Formation as a Function of Temperature: A High Sensitivity Titration Calorimetry Study , 1995 .

[84]  S. P. Moulik,et al.  Thermodynamics of micellization of aerosol OT in polar and nonpolar solvents. A calorimetric study , 1993 .

[85]  Dudley H. Williams,et al.  The cost of conformational order: entropy changes in molecular associations , 1992 .

[86]  T. D. Harris,et al.  Surface derivatization and isolation of semiconductor cluster molecules , 1988 .

[87]  P. C. Hiemenz,et al.  Principles of colloid and surface chemistry , 1977 .