Parameter identification in multistage population dynamics model

Abstract We present a numerical analysis to solve a parameter identification problem. We identify the demographical parameters of a multistage population dynamics model (Ainseba et al., 2011 [12] ). Our nonlinear optimization problem with constraints is solved by a Quasi-Newton method. The convergence proof of this numerical method is performed here. Some numerical applications of it are also given at the end of the paper.

[1]  Determining a coefficient in a first-order hyperbolic equation , 1991 .

[2]  Tanya Kostova,et al.  An explicit third‐order numerical method for size‐structured population equations , 2003 .

[3]  H. Yabe,et al.  Local and superlinear convergence of quasi-Newton methods based on modified secant conditions , 2007 .

[4]  William Rundell Determining the Death Rate for an Age-Structured Population from Census Data , 1993, SIAM J. Appl. Math..

[5]  Jim Douglas,et al.  Numerical methods for a model of population dynamics , 1987 .

[6]  W. Rundell,et al.  Determining the initial age distribution for an age structured population. , 1991, Mathematical population studies.

[7]  Joan Saldaña,et al.  A model of physiologically structured population dynamics with a nonlinear individual growth rate , 1995 .

[8]  D. Sulsky,et al.  Numerical solution of structured population models , 1993, Journal of mathematical biology.

[9]  Oscar Angulo,et al.  Numerical integration of fully nonlinear size-structured population models , 2004 .

[10]  James W. Sinko,et al.  A New Model For Age‐Size Structure of a Population , 1967 .

[11]  Delphine Picart,et al.  An innovative multistage, physiologically structured, population model to understand the European grapevine moth dynamics , 2011 .

[12]  Chung-Ki Cho,et al.  Second-order accurate difference methods for a one-sex model of population dynamics , 1993 .

[13]  John E. Dennis,et al.  On the Local and Superlinear Convergence of Quasi-Newton Methods , 1973 .

[14]  W. Rundell Determining the birth function for an age structured population. , 1989, Mathematical population studies.

[15]  Delphine Picart Modélisation et estimation des paramètres liés au succès reproducteur d'un ravageur de la vigne (Lobesia botrana DEN. & SCHIFF.) , 2009 .

[16]  John E Banks,et al.  Estimation of Dynamic Rate Parameters in Insect Populations Undergoing Sublethal Exposure to Pesticides , 2007, Bulletin of mathematical biology.

[17]  Numerical integration of nonlinear size-structured population equations , 2000 .

[18]  G. Webb Theory of Nonlinear Age-Dependent Population Dynamics , 1985 .

[19]  Azmy S. Ackleh,et al.  Parameter identification in size-structured population models with nonlinear individual rates , 1999 .

[20]  Morton E. Gurtin,et al.  Non-linear age-dependent population dynamics , 1974 .

[21]  Mats Gyllenberg,et al.  The inverse problem of linear age-structured population dynamics , 2002 .

[22]  Azmy S. Ackleh,et al.  An implicit finite difference scheme for the nonlinear size-structured population model , 1997 .