Endomorphism rings and a generalization of torsion-freeness and purity
暂无分享,去创建一个
[1] J. Hausen. MODULES WITH THE SUMMAND INTERSECTION PROPERTY , 1989 .
[2] U. Albrecht. FAITHFUL ABELIAN GROUPS OF INFINITE RANK , 1988 .
[3] U. Albrecht. Baer’s lemma and Fuchs’s problem 84a , 1986 .
[4] U. Albrecht. A note on locally $A$-projective groups. , 1985 .
[5] U. Albrecht. Chain conditions in endomorphism rings , 1985 .
[6] R. Göbel,et al. Every Cotorsion-Free Ring is an Endomorphism Ring , 1982 .
[7] David M. Arnold,et al. Finite Rank Torsion Free Abelian Groups and Rings , 1982 .
[8] R. Warfield,et al. Homomorphisms between cartesian powers of an abelian group , 1981 .
[9] C. R. Hajarnavis,et al. Rings with chain conditions , 1980 .
[10] Friedrich Ulmer,et al. Localizations of endomorphism rings and fixpoints , 1976 .
[11] E. Lady,et al. Endomorphism rings and direct sums of torsion free abelian groups , 1975 .
[12] D. Arnold,et al. Abelian groups, $A$, such that $H{\rm om}(A,---)$ preserves direct sums of copies of $A$. , 1975 .
[13] Friedrich Ulmer,et al. A flatness criterion in Grothendieck categories , 1973 .
[14] László Fuchs,et al. Infinite Abelian groups , 1970 .
[15] H. Zassenhaus. Orders as Endomorphism Rings of Modules of the Same Rank , 1967 .
[16] C. P. Walker. Relative homological algebra and abelian groups , 1966 .