Efficient and stable exponential time differencing Runge-Kutta methods for phase field elastic bending energy models

The Willmore flow formulated by phase field dynamics based on the elastic bending energy model has been widely used to describe the shape transformation of biological lipid vesicles. In this paper, we develop and investigate some efficient and stable numerical methods for simulating the unconstrained phase field Willmore dynamics and the phase field Willmore dynamics with fixed volume and surface area constraints. The proposed methods can be high-order accurate and are completely explicit in nature, by combining exponential time differencing Runge-Kutta approximations for time integration with spectral discretizations for spatial operators on regular meshes. We also incorporate novel linear operator splitting techniques into the numerical schemes to improve the discrete energy stability. In order to avoid extra numerical instability brought by use of large penalty parameters in solving the constrained phase field Willmore dynamics problem, a modified augmented Lagrange multiplier approach is proposed and adopted. Various numerical experiments are performed to demonstrate accuracy and stability of the proposed methods.

[1]  Q. Du,et al.  Modelling and simulations of multi-component lipid membranes and open membranes via diffuse interface approaches , 2006, Journal of Mathematical Biology.

[2]  Lloyd N. Trefethen,et al.  Fourth-Order Time-Stepping for Stiff PDEs , 2005, SIAM J. Sci. Comput..

[3]  Q. Du,et al.  Energetic variational approaches in modeling vesicle and fluid interactions , 2009 .

[4]  M. Hestenes Multiplier and gradient methods , 1969 .

[5]  Max Gunzburger,et al.  A two phase field model for tracking vesicle–vesicle adhesion , 2016, Journal of mathematical biology.

[6]  Q. Du,et al.  A phase field approach in the numerical study of the elastic bending energy for vesicle membranes , 2004 .

[7]  Jie Shen,et al.  Applications of semi-implicit Fourier-spectral method to phase field equations , 1998 .

[8]  H. Garcke,et al.  Thermodynamically consistent higher order phase field Navier-Stokes models with applications to biomembranes , 2010 .

[9]  Xiaoqiang Wang,et al.  Asymptotic Analysis of Phase Field Formulations of Bending Elasticity Models , 2008, SIAM J. Math. Anal..

[10]  P. Canham The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. , 1970, Journal of theoretical biology.

[11]  Qiang Du,et al.  A phase field formulation of the Willmore problem , 2005 .

[12]  Qiang Du,et al.  Retrieving Topological Information for Phase Field Models , 2005, SIAM J. Appl. Math..

[13]  Axel Voigt,et al.  Dynamics of multicomponent vesicles in a viscous fluid , 2010, J. Comput. Phys..

[14]  C. Misbah,et al.  Towards a thermodynamically consistent picture of the phase-field model of vesicles: local membrane incompressibility. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Richard S. Chadwick,et al.  Axisymmetric Indentation of a Thin Incompressible Elastic Layer , 2002, SIAM J. Appl. Math..

[16]  Liyong Zhu,et al.  Error estimates for approximations of a gradient dynamics for phase field elastic bending energy of vesicle membrane deformation , 2014 .

[17]  Qiang Du,et al.  Modeling the spontaneous curvature effects in static cell membrane deformations by a phase field formulation , 2005 .

[18]  S. Esedoglu,et al.  Colliding interfaces in old and new diffuse-interface approximations of Willmore-flow , 2012, 1209.6531.

[19]  Giovanni Bellettini,et al.  Approximation of Helfrich's Functional via Diffuse Interfaces , 2009, SIAM J. Math. Anal..

[20]  Qiang Du,et al.  Analysis and Applications of the Exponential Time Differencing Schemes and Their Contour Integration Modifications , 2005 .

[21]  Jie Shen,et al.  Numerical simulations of jet pinching-off and drop formation using an energetic variational phase-field method , 2006, J. Comput. Phys..

[22]  Jian Zhang,et al.  Fast and accurate algorithms for simulating coarsening dynamics of Cahn–Hilliard equations , 2015 .

[23]  Yoshihiro Tonegawa,et al.  A singular perturbation problem with integral curvature bound , 2007 .

[24]  Tao Tang,et al.  Stability Analysis of Large Time-Stepping Methods for Epitaxial Growth Models , 2006, SIAM J. Numer. Anal..

[25]  Elie Bretin,et al.  Phase-field approximations of the Willmore functional and flow , 2013, Numerische Mathematik.

[26]  Matthias Röger,et al.  On a Modified Conjecture of De Giorgi , 2006 .

[27]  Jian Zhang,et al.  A phase field model for vesicle-substrate adhesion , 2009, J. Comput. Phys..

[28]  S. Cox,et al.  Exponential Time Differencing for Stiff Systems , 2002 .

[29]  Jian Zhang,et al.  Fast Explicit Integration Factor Methods for Semilinear Parabolic Equations , 2015, J. Sci. Comput..

[30]  E. Evans,et al.  Bending resistance and chemically induced moments in membrane bilayers. , 1974, Biophysical journal.

[31]  Max D. Gunzburger,et al.  Simulating vesicle-substrate adhesion using two phase field functions , 2014, J. Comput. Phys..

[32]  C. Loan Computational Frameworks for the Fast Fourier Transform , 1992 .

[33]  W. Helfrich Elastic Properties of Lipid Bilayers: Theory and Possible Experiments , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.

[34]  Qiang Du,et al.  DIFFUSE INTERFACE ENERGIES CAPTURING THE EULER NUMBER: RELAXATION AND RENOMALIZATION ∗ , 2007 .

[35]  Q. Du Phase field calculus, curvature-dependent energies, and vesicle membranes , 2011 .

[36]  M. Droske,et al.  A level set formulation for Willmore flow , 2004 .

[37]  P. Loreti,et al.  Propagation of fronts in a nonlinear fourth order equation , 2000, European Journal of Applied Mathematics.

[38]  Chloe M Funkhouser,et al.  Coupled composition-deformation phase-field method for multicomponent lipid membranes. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  Jian Zhang,et al.  Adaptive Finite Element Method for a Phase Field Bending Elasticity Model of Vesicle Membrane Deformations , 2008, SIAM J. Sci. Comput..

[40]  Qiang Du,et al.  Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions , 2006, J. Comput. Phys..

[41]  Axel Voigt,et al.  Phase-field modeling of the dynamics of multicomponent vesicles: Spinodal decomposition, coarsening, budding, and fission. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.