Efficient and stable exponential time differencing Runge-Kutta methods for phase field elastic bending energy models
暂无分享,去创建一个
Qiang Du | Lili Ju | Xiaoqiang Wang | Q. Du | L. Ju | Xiaoqiang Wang
[1] Q. Du,et al. Modelling and simulations of multi-component lipid membranes and open membranes via diffuse interface approaches , 2006, Journal of Mathematical Biology.
[2] Lloyd N. Trefethen,et al. Fourth-Order Time-Stepping for Stiff PDEs , 2005, SIAM J. Sci. Comput..
[3] Q. Du,et al. Energetic variational approaches in modeling vesicle and fluid interactions , 2009 .
[4] M. Hestenes. Multiplier and gradient methods , 1969 .
[5] Max Gunzburger,et al. A two phase field model for tracking vesicle–vesicle adhesion , 2016, Journal of mathematical biology.
[6] Q. Du,et al. A phase field approach in the numerical study of the elastic bending energy for vesicle membranes , 2004 .
[7] Jie Shen,et al. Applications of semi-implicit Fourier-spectral method to phase field equations , 1998 .
[8] H. Garcke,et al. Thermodynamically consistent higher order phase field Navier-Stokes models with applications to biomembranes , 2010 .
[9] Xiaoqiang Wang,et al. Asymptotic Analysis of Phase Field Formulations of Bending Elasticity Models , 2008, SIAM J. Math. Anal..
[10] P. Canham. The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. , 1970, Journal of theoretical biology.
[11] Qiang Du,et al. A phase field formulation of the Willmore problem , 2005 .
[12] Qiang Du,et al. Retrieving Topological Information for Phase Field Models , 2005, SIAM J. Appl. Math..
[13] Axel Voigt,et al. Dynamics of multicomponent vesicles in a viscous fluid , 2010, J. Comput. Phys..
[14] C. Misbah,et al. Towards a thermodynamically consistent picture of the phase-field model of vesicles: local membrane incompressibility. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.
[15] Richard S. Chadwick,et al. Axisymmetric Indentation of a Thin Incompressible Elastic Layer , 2002, SIAM J. Appl. Math..
[16] Liyong Zhu,et al. Error estimates for approximations of a gradient dynamics for phase field elastic bending energy of vesicle membrane deformation , 2014 .
[17] Qiang Du,et al. Modeling the spontaneous curvature effects in static cell membrane deformations by a phase field formulation , 2005 .
[18] S. Esedoglu,et al. Colliding interfaces in old and new diffuse-interface approximations of Willmore-flow , 2012, 1209.6531.
[19] Giovanni Bellettini,et al. Approximation of Helfrich's Functional via Diffuse Interfaces , 2009, SIAM J. Math. Anal..
[20] Qiang Du,et al. Analysis and Applications of the Exponential Time Differencing Schemes and Their Contour Integration Modifications , 2005 .
[21] Jie Shen,et al. Numerical simulations of jet pinching-off and drop formation using an energetic variational phase-field method , 2006, J. Comput. Phys..
[22] Jian Zhang,et al. Fast and accurate algorithms for simulating coarsening dynamics of Cahn–Hilliard equations , 2015 .
[23] Yoshihiro Tonegawa,et al. A singular perturbation problem with integral curvature bound , 2007 .
[24] Tao Tang,et al. Stability Analysis of Large Time-Stepping Methods for Epitaxial Growth Models , 2006, SIAM J. Numer. Anal..
[25] Elie Bretin,et al. Phase-field approximations of the Willmore functional and flow , 2013, Numerische Mathematik.
[26] Matthias Röger,et al. On a Modified Conjecture of De Giorgi , 2006 .
[27] Jian Zhang,et al. A phase field model for vesicle-substrate adhesion , 2009, J. Comput. Phys..
[28] S. Cox,et al. Exponential Time Differencing for Stiff Systems , 2002 .
[29] Jian Zhang,et al. Fast Explicit Integration Factor Methods for Semilinear Parabolic Equations , 2015, J. Sci. Comput..
[30] E. Evans,et al. Bending resistance and chemically induced moments in membrane bilayers. , 1974, Biophysical journal.
[31] Max D. Gunzburger,et al. Simulating vesicle-substrate adhesion using two phase field functions , 2014, J. Comput. Phys..
[32] C. Loan. Computational Frameworks for the Fast Fourier Transform , 1992 .
[33] W. Helfrich. Elastic Properties of Lipid Bilayers: Theory and Possible Experiments , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.
[34] Qiang Du,et al. DIFFUSE INTERFACE ENERGIES CAPTURING THE EULER NUMBER: RELAXATION AND RENOMALIZATION ∗ , 2007 .
[35] Q. Du. Phase field calculus, curvature-dependent energies, and vesicle membranes , 2011 .
[36] M. Droske,et al. A level set formulation for Willmore flow , 2004 .
[37] P. Loreti,et al. Propagation of fronts in a nonlinear fourth order equation , 2000, European Journal of Applied Mathematics.
[38] Chloe M Funkhouser,et al. Coupled composition-deformation phase-field method for multicomponent lipid membranes. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.
[39] Jian Zhang,et al. Adaptive Finite Element Method for a Phase Field Bending Elasticity Model of Vesicle Membrane Deformations , 2008, SIAM J. Sci. Comput..
[40] Qiang Du,et al. Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions , 2006, J. Comput. Phys..
[41] Axel Voigt,et al. Phase-field modeling of the dynamics of multicomponent vesicles: Spinodal decomposition, coarsening, budding, and fission. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.