Formation of α‐Tocopherolquinone and α‐Tocopherolquinone Epoxides in Plant Oil

The antioxidative activity of α-tocopherol in oil is necessary for the inhibition of lipid peroxidation. If no regeneration of antioxidants is possible in foods, oxidation products are formed to a measurable extent. The aim of this study was to investigate oxidation products of α-tocopherol in plant oil. The oxidation of α-tocopherol in plant oil leads to α-tocopherolquinone and to two epoxides (α-tocopherolquinone-2,3-epoxide, α-tocopherolquinone-5,6-epoxide). These three reaction products were identified and quantified in plant oil. The 2,3-epoxide is formed at lower temperatures (90°C) whereas at high temperatures (180–220°C) only the 5,6-epoxide appears. The kinetics show that the 5,6-epoxide is produced as long as α-tocopherol is present. With longer reaction times the concentration of the 5,6-epoxide starts to decrease. α-Tocopherolquinone is found at substantially lower concentrations. Entstehung von α-Tocopherolquinon und α-Tocopherolquinonepoxid in Speiseol. Die antioxidative Aktivitat von a-Tocopherol ist verantwortlich fur die Inhibition der Lipidperoxidation in pflanzlichen Speiseolen. Wenn keine Regeneration der Antioxidantien moglich ist, wie dies in Lebensmitteln der Fall ist, werden Oxidationsprodukte in einem mesbaren Ausmas gebildet. In dieser Arbeit wurden die Oxidationsprodukte von α-Tocopherol in Speiseol durch den Einflus von Sauerstoff aus Luft untersucht. Die Oxidation von α-Tocopherol fuhrt zu α-Tocopherolchinon und zu zwei Epoxiden (α-Tocopherolchinon-2,3-epoxid, α-Tocopherolchinon-5,6-epoxid). Diese drei Reaktionsprodukte wurden identifiziert und quantifiziert. Das 2,3-Epoxid wird bei niedrigeren Temperaturen (90°C) gebildet, wahrend bei hoheren Temperaturen (180–220°C) ausschlieslich das 5,6-Epoxid nachgewiesen werden kann. Der zeitliche Verlauf zeigt, das das 5,6-Epoxid solange gebildet wird, bis das α-Tocopherol verbraucht ist. Bei langeren Reaktionszeiten reagiert das 5,6-Epoxid weiter, was zur Folge hat, das die Konzentration wieder abnimmt. α-Tocopherolchinon wird in wesentlich niedrigeren Konzentrationen gefunden.

[1]  R. Stocker,et al.  Is a-tocopherol a reservoir for a-tocopheryl hydroquinone? , 1995 .

[2]  H. Esterbauer,et al.  Simulation of lipid peroxidation in low-density lipoprotein by a basic "skeleton" of reactions. , 1995, Chemical research in toxicology.

[3]  Kenneth H. Jones,et al.  Antioxidant and cytotoxic tocopheryl quinones in normal and cancer cells. , 1995, Free radical biology & medicine.

[4]  D. Liebler,et al.  Vitamin E oxidation in rat liver mitochondria. , 1995, Biochemistry.

[5]  D. Liebler Tocopherone and expoxytocopherone products of vitamin E oxidation. , 1994, Methods in enzymology.

[6]  I. Molnár,et al.  Investigation of γ-irradiation of α-tocopherol and its related derivatives by high-performance liquid chromatography using a rapid scanning spectrophotometer☆ , 1992 .

[7]  C. Bourgeois Determination of Vitamin E: Tocopherols and Tocotrienols , 1991 .

[8]  P. F. Baker,et al.  Oxidation of vitamin E: evidence for competing autoxidation and peroxyl radical trapping reactions of the tocopheroxyl radical , 1990 .

[9]  J. Kehrer,et al.  Simultaneous measurement of tocopherols and tocopheryl quinones in tissue fractions using high-performance liquid chromatography with redox-cycling electrochemical detection. , 1987, Journal of chromatography.

[10]  S. Matsushita,et al.  Products Formed by Photosensitized Oxidation of Tocopherols , 1979 .

[11]  W. Skinner Vitamin E oxidation with free radical initiators. Azobis-isobutyronitrile. , 1964, Biochemical and biophysical research communications.

[12]  S. Shah,et al.  Conversion of d-α-tocopherol-C14 to tocopheryl-p-quinone in vivo☆ , 1962 .