Complex Oscillations in the Delayed FitzHugh–Nagumo Equation

Motivated by the dynamics of neuronal responses, we analyze the dynamics of the FitzHugh–Nagumo slow–fast system with delayed self-coupling. This system provides a canonical example of a canard explosion for sufficiently small delays. Beyond this regime, delays significantly enrich the dynamics, leading to mixed-mode oscillations, bursting and chaos. These behaviors emerge from a delay-induced subcritical Bogdanov–Takens instability arising at the fold points of the S-shaped critical manifold. Underlying the transition from canard-induced to delay-induced dynamics is an abrupt switch in the nature of the Hopf bifurcation.

[1]  Eugene M. Izhikevich,et al.  Neural excitability, Spiking and bursting , 2000, Int. J. Bifurc. Chaos.

[2]  Marcus Pivato,et al.  Symmetry Groupoids and Patterns of Synchrony in Coupled Cell Networks , 2003, SIAM J. Appl. Dyn. Syst..

[3]  M. Koper Bifurcations of mixed-mode oscillations in a three-variable autonomous Van der Pol-Duffing model with a cross-shaped phase diagram , 1995 .

[4]  John Guckenheimer,et al.  Mixed-Mode Oscillations with Multiple Time Scales , 2012, SIAM Rev..

[5]  Olivier D. Faugeras,et al.  Noise-Induced Behaviors in Neural Mean Field Dynamics , 2011, SIAM J. Appl. Dyn. Syst..

[6]  G. Samaey,et al.  DDE-BIFTOOL v. 2.00: a Matlab package for bifurcation analysis of delay differential equations , 2001 .

[7]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[8]  Hayato Chiba,et al.  Periodic orbits and chaos in fast–slow systems with Bogdanov–Takens type fold points , 2008, 0812.1446.

[9]  H. J. Hupkes,et al.  Traveling Pulse Solutions for the Discrete FitzHugh-Nagumo System , 2010, SIAM J. Appl. Dyn. Syst..

[10]  Jonathan E. Rubin,et al.  Giant squid-hidden canard: the 3D geometry of the Hodgkin–Huxley model , 2007, Biological Cybernetics.

[11]  L. Magalhães,et al.  Normal Forms for Retarded Functional Differential Equations and Applications to Bogdanov-Takens Singularity , 1995 .

[12]  Christopher Jones,et al.  Geometric singular perturbation theory , 1995 .

[13]  Richard E. Plant,et al.  A FitzHugh Differential-Difference Equation Modeling Recurrent Neural Feedback , 1981 .

[14]  S. Baer,et al.  Sungular hopf bifurcation to relaxation oscillations , 1986 .

[15]  Sue Ann Campbell,et al.  Delay Induced Canards in High Speed Machining , 2009 .

[16]  M. Higueraa,et al.  Dynamics of nearly inviscid Faraday waves in almost circular containers , 2005 .

[17]  Thomas Erneux,et al.  Delay induced canards in a model of high speed machining , 2009 .

[18]  Neil Fenichel Geometric singular perturbation theory for ordinary differential equations , 1979 .

[19]  David J. W. Simpson,et al.  Mixed-mode oscillations in a stochastic, piecewise-linear system , 2010, 1010.1504.

[20]  T. Erneux,et al.  Singular Hopf bifurcation in a differential equation with large state-dependent delay , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[21]  J. NAGUMOt,et al.  An Active Pulse Transmission Line Simulating Nerve Axon , 2006 .

[22]  Mathieu Desroches,et al.  A showcase of torus canards in neuronal bursters , 2012, Journal of mathematical neuroscience.

[23]  Y. Kuznetsov Elements of Applied Bifurcation Theory , 2023, Applied Mathematical Sciences.

[24]  Bard Ermentrout,et al.  Canards, Clusters, and Synchronization in a Weakly Coupled Interneuron Model , 2009, SIAM J. Appl. Dyn. Syst..

[25]  Pak Chiu Leung,et al.  Numerical bifurcation analysis of delay differential equations , 1982 .

[26]  Martin Krupa,et al.  Mixed Mode Oscillations due to the Generalized Canard Phenomenon , 2006 .

[27]  John Guckenheimer,et al.  The singular limit of a Hopf bifurcation , 2012 .

[28]  Vivien Kirk,et al.  Changes in the criticality of Hopf bifurcations due to certain model reduction techniques in systems with multiple timescales , 2011, Journal of mathematical neuroscience.

[29]  Freddy Dumortier,et al.  Canard Cycles and Center Manifolds , 1996 .

[30]  Balth. van der Pol Jun. LXXXVIII. On “relaxation-oscillations” , 1926 .

[31]  J. Rinzel,et al.  Emergence of organized bursting in clusters of pancreatic beta-cells by channel sharing. , 1988, Biophysical journal.

[32]  Jan Danckaert,et al.  Strongly asymmetric square waves in a time-delayed system. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  G. Ermentrout,et al.  Analysis of neural excitability and oscillations , 1989 .

[34]  John Mallet-Paret,et al.  Global continuation and asymptotic behaviour for periodic solutions of a differential-delay equation , 1986 .

[35]  L. Magalhães,et al.  Normal Forms for Retarded Functional Differential Equations with Parameters and Applications to Hopf Bifurcation , 1995 .

[36]  Sue Ann Campbell,et al.  Calculating Centre Manifolds for Delay Differential Equations Using Maple , 2009 .

[37]  Jan Danckaert,et al.  Relaxation and square-wave oscillations in a semiconductor laser with polarization rotated optical feedback. , 2014, Optics express.

[38]  Dirk Roose,et al.  Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL , 2002, TOMS.

[39]  Jonathan Touboul,et al.  Limits and Dynamics of Stochastic Neuronal Networks with Random Heterogeneous Delays , 2012, Journal of Statistical Physics.

[40]  Gaston H. Gonnet,et al.  On the LambertW function , 1996, Adv. Comput. Math..

[41]  Johan Grasman,et al.  Relaxation Oscillations , 2009, Encyclopedia of Complexity and Systems Science.

[42]  R. FitzHugh Mathematical models of threshold phenomena in the nerve membrane , 1955 .

[43]  David Terman,et al.  Mathematical foundations of neuroscience , 2010 .

[44]  C. Quiñinao,et al.  On a Kinetic Fitzhugh–Nagumo Model of Neuronal Network , 2015, 1503.00492.

[45]  Robert E. Foster,et al.  Oscillatory behavior in inferior olive neurons: Mechanism, modulation, cell aggregates , 1986, Brain Research Bulletin.

[46]  Jack K. Hale,et al.  Introduction to Functional Differential Equations , 1993, Applied Mathematical Sciences.

[47]  John Rinzel,et al.  A Formal Classification of Bursting Mechanisms in Excitable Systems , 1987 .

[48]  Jianzhong Su,et al.  Analysis of a Canard Mechanism by Which Excitatory Synaptic Coupling Can Synchronize Neurons at Low Firing Frequencies , 2004, SIAM J. Appl. Math..

[49]  Athanasios Gavrielides,et al.  Simple and complex square waves in an edge-emitting diode laser with polarization-rotated optical feedback. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[50]  Sue Ann Campbell,et al.  Stability and Bifurcation Analysis of a Nonlinear DDE Model for Drilling , 2004, J. Nonlinear Sci..

[51]  David Terman,et al.  Chaotic spikes arising from a model of bursting in excitable membranes , 1991 .

[52]  Jonathan Touboul,et al.  Noise-induced canard and mixed-mode oscillations in large stochastic networks with multiple timescales , 2013, 1302.7159.

[53]  Jan Danckaert,et al.  Slow–fast dynamics of a time-delayed electro-optic oscillator , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[54]  É. Benoît,et al.  Chasse au canard (première partie) , 1981 .

[55]  M. Alexander,et al.  Principles of Neural Science , 1981 .

[56]  Jonathan D. Touboul,et al.  Canard explosion in delayed equations with multiple timescales , 2014, 1407.7703.